請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47248完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顧家綺(Chia-Chi Ku) | |
| dc.contributor.author | Chih-Hsiu Wang | en |
| dc.contributor.author | 王之秀 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:52:15Z | - |
| dc.date.available | 2015-09-09 | |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-18 | |
| dc.identifier.citation | Alves, N.L., Arosa, F.A., and van Lier, R.A. (2007). Common gamma chain cytokines: dissidence in the details. Immunol Lett 108, 113-120.
Anderson, D.M., Johnson, L., Glaccum, M.B., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Valentine, V., Kirstein, M.N., Shapiro, D.N., Morris, S.W., and et al. (1995a). Chromosomal assignment and genomic structure of Il15. Genomics 25, 701-706. Anderson, D.M., Kumaki, S., Ahdieh, M., Bertles, J., Tometsko, M., Loomis, A., Giri, J., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., and et al. (1995b). Functional characterization of the human interleukin-15 receptor alpha chain and close linkage of IL15RA and IL2RA genes. J Biol Chem 270, 29862-29869. Angiolillo, A.L., Kanegane, H., Sgadari, C., Reaman, G.H., and Tosato, G. (1997). Interleukin-15 promotes angiogenesis in vivo. Biochem Biophys Res Commun 233, 231-237. Araki, A., Hazama, S., Yoshimura, K., Yoshino, S., Iizuka, N., and Oka, M. (2004). Tumor secreting high levels of IL-15 induces specific immunity to low immunogenic colon adenocarcinoma via CD8+ T cells. Int J Mol Med 14, 571-576. Atamas, S.P., Choi, J., Yurovsky, V.V., and White, B. (1996). An alternative splice variant of human IL-4, IL-4 delta 2, inhibits IL-4-stimulated T cell proliferation. J Immunol 156, 435-441. Azimi, N., Brown, K., Bamford, R.N., Tagaya, Y., Siebenlist, U., and Waldmann, T.A. (1998). Human T cell lymphotropic virus type I Tax protein trans-activates interleukin 15 gene transcription through an NF-kappaB site. Proc Natl Acad Sci U S A 95, 2452-2457. Bamford, R.N., Battiata, A.P., Burton, J.D., Sharma, H., and Waldmann, T.A. (1996a). Interleukin (IL) 15/IL-T production by the adult T-cell leukemia cell line HuT-102 is associated with a human T-cell lymphotrophic virus type I region /IL-15 fusion message that lacks many upstream AUGs that normally attenuates IL-15 mRNA translation. Proc Natl Acad Sci U S A 93, 2897-2902. Bamford, R.N., Battiata, A.P., and Waldmann, T.A. (1996b). IL-15: the role of translational regulation in their expression. J Leukoc Biol 59, 476-480. Bamford, R.N., DeFilippis, A.P., Azimi, N., Kurys, G., and Waldmann, T.A. (1998). The 5' untranslated region, signal peptide, and the coding sequence of the carboxyl terminus of IL-15 participate in its multifaceted translational control. J Immunol 160, 4418-4426. Bamford, R.N., Grant, A.J., Burton, J.D., Peters, C., Kurys, G., Goldman, C.K., Brennan, J., Roessler, E., and Waldmann, T.A. (1994). The interleukin (IL) 2 receptor beta chain is shared by IL-2 and a cytokine, provisionally designated IL-T, that stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci U S A 91, 4940-4944. Bazan, J.F. (1990a). Haemopoietic receptors and helical cytokines. Immunol Today 11, 350-354. Bazan, J.F. (1990b). Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A 87, 6934-6938. Bergamaschi, C., Jalah, R., Kulkarni, V., Rosati, M., Zhang, G.M., Alicea, C., Zolotukhin, A.S., Felber, B.K., and Pavlakis, G.N. (2009). Secretion and biological activity of short signal peptide IL-15 is chaperoned by IL-15 receptor alpha in vivo. J Immunol 183, 3064-3072. Bergamaschi, C., Rosati, M., Jalah, R., Valentin, A., Kulkarni, V., Alicea, C., Zhang, G.M., Patel, V., Felber, B.K., and Pavlakis, G.N. (2008). Intracellular interaction of interleukin-15 with its receptor alpha during production leads to mutual stabilization and increased bioactivity. J Biol Chem 283, 4189-4199. Bernard, J., Harb, C., Mortier, E., Quemener, A., Meloen, R.H., Vermot-Desroches, C., Wijdeness, J., van Dijken, P., Grotzinger, J., Slootstra, J.W., et al. (2004). Identification of an interleukin-15alpha receptor-binding site on human interleukin-15. J Biol Chem 279, 24313-24322. Bianchi, T., Gasser, S., Trumpp, A., and MacDonald, H.R. (2006). c-Myc acts downstream of IL-15 in the regulation of memory CD8 T-cell homeostasis. Blood 107, 3992-3999. Budagian, V., Bulanova, E., Orinska, Z., Ludwig, A., Rose-John, S., Saftig, P., Borden, E.C., and Bulfone-Paus, S. (2004). Natural soluble interleukin-15Ralpha is generated by cleavage that involves the tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17). J Biol Chem 279, 40368-40375. Budagian, V., Bulanova, E., Paus, R., and Bulfone-Paus, S. (2006). IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev 17, 259-280. Bulanova, E., Budagian, V., Orinska, Z., Krause, H., Paus, R., and Bulfone-Paus, S. (2003). Mast cells express novel functional IL-15 receptor alpha isoforms. J Immunol 170, 5045-5055. Bulfone-Paus, S., Ungureanu, D., Pohl, T., Lindner, G., Paus, R., Ruckert, R., Krause, H., and Kunzendorf, U. (1997). Interleukin-15 protects from lethal apoptosis in vivo. Nat Med 3, 1124-1128. Burkett, P.R., Koka, R., Chien, M., Chai, S., Boone, D.L., and Ma, A. (2004). Coordinate expression and trans presentation of interleukin (IL)-15Ralpha and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J Exp Med 200, 825-834. Burkett, P.R., Koka, R., Chien, M., Chai, S., Chan, F., Ma, A., and Boone, D.L. (2003). IL-15R alpha expression on CD8+ T cells is dispensable for T cell memory. Proc Natl Acad Sci U S A 100, 4724-4729. Cao, X., Shores, E.W., Hu-Li, J., Anver, M.R., Kelsall, B.L., Russell, S.M., Drago, J., Noguchi, M., Grinberg, A., Bloom, E.T., and et al. (1995). Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2, 223-238. Carson, W.E., Giri, J.G., Lindemann, M.J., Linett, M.L., Ahdieh, M., Paxton, R., Anderson, D., Eisenmann, J., Grabstein, K., and Caligiuri, M.A. (1994). Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med 180, 1395-1403. Chirifu, M., Hayashi, C., Nakamura, T., Toma, S., Shuto, T., Kai, H., Yamagata, Y., Davis, S.J., and Ikemizu, S. (2007). Crystal structure of the IL-15-IL-15Ralpha complex, a cytokine-receptor unit presented in trans. Nat Immunol 8, 1001-1007. Doherty, T.M., Seder, R.A., and Sher, A. (1996). Induction and regulation of IL-15 expression in murine macrophages. J Immunol 156, 735-741. Dubois, S., Magrangeas, F., Lehours, P., Raher, S., Bernard, J., Boisteau, O., Leroy, S., Minvielle, S., Godard, A., and Jacques, Y. (1999). Natural splicing of exon 2 of human interleukin-15 receptor alpha-chain mRNA results in a shortened form with a distinct pattern of expression. J Biol Chem 274, 26978-26984. Dubois, S., Mariner, J., Waldmann, T.A., and Tagaya, Y. (2002). IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 17, 537-547. Dubois, S.P., Waldmann, T.A., and Muller, J.R. (2005). Survival adjustment of mature dendritic cells by IL-15. Proc Natl Acad Sci U S A 102, 8662-8667. Duitman, E.H., Orinska, Z., Bulanova, E., Paus, R., and Bulfone-Paus, S. (2008). How a cytokine is chaperoned through the secretory pathway by complexing with its own receptor: lessons from interleukin-15 (IL-15)/IL-15 receptor alpha. Mol Cell Biol 28, 4851-4861. Duke, O., Panayi, G.S., Janossy, G., and Poulter, L.W. (1982). An immunohistological analysis of lymphocyte subpopulations and their microenvironment in the synovial membranes of patients with rheumatoid arthritis using monoclonal antibodies. Clin Exp Immunol 49, 22-30. Eizirik, D.L., Cardozo, A.K., and Cnop, M. (2008). The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29, 42-61. Fehniger, T.A., and Caligiuri, M.A. (2001). Interleukin 15: biology and relevance to human disease. Blood 97, 14-32. Flamand, L., Stefanescu, I., and Menezes, J. (1996). Human herpesvirus-6 enhances natural killer cell cytotoxicity via IL-15. J Clin Invest 97, 1373-1381. Fontenot, J.D., Rasmussen, J.P., Gavin, M.A., and Rudensky, A.Y. (2005). A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6, 1142-1151. Gaggero, A., Azzarone, B., Andrei, C., Mishal, Z., Meazza, R., Zappia, E., Rubartelli, A., and Ferrini, S. (1999). Differential intracellular trafficking, secretion and endosomal localization of two IL-15 isoforms. Eur J Immunol 29, 1265-1274. Gilmour, K.C., Fujii, H., Cranston, T., Davies, E.G., Kinnon, C., and Gaspar, H.B. (2001). Defective expression of the interleukin-2/interleukin-15 receptor beta subunit leads to a natural killer cell-deficient form of severe combined immunodeficiency. Blood 98, 877-879. Giri, J.G., Anderson, D.M., Kumaki, S., Park, L.S., Grabstein, K.H., and Cosman, D. (1995a). IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2. J Leukoc Biol 57, 763-766. Giri, J.G., Kumaki, S., Ahdieh, M., Friend, D.J., Loomis, A., Shanebeck, K., DuBose, R., Cosman, D., Park, L.S., and Anderson, D.M. (1995b). Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J 14, 3654-3663. Grabstein, K.H., Eisenman, J., Shanebeck, K., Rauch, C., Srinivasan, S., Fung, V., Beers, C., Richardson, J., Schoenborn, M.A., Ahdieh, M., and et al. (1994). Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264, 965-968. He, Y.W., and Malek, T.R. (1998). The structure and function of gamma c-dependent cytokines and receptors: regulation of T lymphocyte development and homeostasis. Crit Rev Immunol 18, 503-524. Hoontrakoon, R., Chu, H.W., Gardai, S.J., Wenzel, S.E., McDonald, P., Fadok, V.A., Henson, P.M., and Bratton, D.L. (2002). Interleukin-15 inhibits spontaneous apoptosis in human eosinophils via autocrine production of granulocyte macrophage-colony stimulating factor and nuclear factor-kappaB activation. Am J Respir Cell Mol Biol 26, 404-412. Johnston, J.A., Bacon, C.M., Finbloom, D.S., Rees, R.C., Kaplan, D., Shibuya, K., Ortaldo, J.R., Gupta, S., Chen, Y.Q., Giri, J.D., and et al. (1995). Tyrosine phosphorylation and activation of STAT5, STAT3, and Janus kinases by interleukins 2 and 15. Proc Natl Acad Sci U S A 92, 8705-8709. Kanegane, H., and Tosato, G. (1996). Activation of naive and memory T cells by interleukin-15. Blood 88, 230-235. Keller, P., and Simons, K. (1997). Post-Golgi biosynthetic trafficking. J Cell Sci 110 ( Pt 24), 3001-3009. Kennedy, M.K., Glaccum, M., Brown, S.N., Butz, E.A., Viney, J.L., Embers, M., Matsuki, N., Charrier, K., Sedger, L., Willis, C.R., et al. (2000). Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191, 771-780. Khan, I.A., and Kasper, L.H. (1996). IL-15 augments CD8+ T cell-mediated immunity against Toxoplasma gondii infection in mice. J Immunol 157, 2103-2108. Koka, R., Burkett, P., Chien, M., Chai, S., Boone, D.L., and Ma, A. (2004). Cutting edge: murine dendritic cells require IL-15R alpha to prime NK cells. J Immunol 173, 3594-3598. Koka, R., Burkett, P.R., Chien, M., Chai, S., Chan, F., Lodolce, J.P., Boone, D.L., and Ma, A. (2003). Interleukin (IL)-15R[alpha]-deficient natural killer cells survive in normal but not IL-15R[alpha]-deficient mice. J Exp Med 197, 977-984. Krause, H., Jandrig, B., Wernicke, C., Bulfone-Paus, S., Pohl, T., and Diamantstein, T. (1996). Genomic structure and chromosomal localization of the human interleukin 15 gene (IL-15). Cytokine 8, 667-674. Kurowska, M., Rudnicka, W., Kontny, E., Janicka, I., Chorazy, M., Kowalczewski, J., Ziolkowska, M., Ferrari-Lacraz, S., Strom, T.B., and Maslinski, W. (2002). Fibroblast-like synoviocytes from rheumatoid arthritis patients express functional IL-15 receptor complex: endogenous IL-15 in autocrine fashion enhances cell proliferation and expression of Bcl-x(L) and Bcl-2. J Immunol 169, 1760-1767. Kurys, G., Tagaya, Y., Bamford, R., Hanover, J.A., and Waldmann, T.A. (2000). The long signal peptide isoform and its alternative processing direct the intracellular trafficking of interleukin-15. J Biol Chem 275, 30653-30659. Lin, J.X., Migone, T.S., Tsang, M., Friedmann, M., Weatherbee, J.A., Zhou, L., Yamauchi, A., Bloom, E.T., Mietz, J., John, S., and et al. (1995). The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2, 331-339. Lodolce, J.P., Boone, D.L., Chai, S., Swain, R.E., Dassopoulos, T., Trettin, S., and Ma, A. (1998). IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669-676. Lodolce, J.P., Burkett, P.R., Boone, D.L., Chien, M., and Ma, A. (2001). T cell-independent interleukin 15Ralpha signals are required for bystander proliferation. J Exp Med 194, 1187-1194. Malamut, G., El Machhour, R., Montcuquet, N., Martin-Lanneree, S., Dusanter-Fourt, I., Verkarre, V., Mention, J.J., Rahmi, G., Kiyono, H., Butz, E.A., et al. IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest 120, 2131-2143. Marks-Konczalik, J., Dubois, S., Losi, J.M., Sabzevari, H., Yamada, N., Feigenbaum, L., Waldmann, T.A., and Tagaya, Y. (2000). IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci U S A 97, 11445-11450. McDonald, P.P., Russo, M.P., Ferrini, S., and Cassatella, M.A. (1998). Interleukin-15 (IL-15) induces NF-kappaB activation and IL-8 production in human neutrophils. Blood 92, 4828-4835. McInnes, I.B., al-Mughales, J., Field, M., Leung, B.P., Huang, F.P., Dixon, R., Sturrock, R.D., Wilkinson, P.C., and Liew, F.Y. (1996). The role of interleukin-15 in T-cell migration and activation in rheumatoid arthritis. Nat Med 2, 175-182. Minami, Y., Kono, T., Miyazaki, T., and Taniguchi, T. (1993). The IL-2 receptor complex: its structure, function, and target genes. Annu Rev Immunol 11, 245-268. Miyazaki, T., Kawahara, A., Fujii, H., Nakagawa, Y., Minami, Y., Liu, Z.J., Oishi, I., Silvennoinen, O., Witthuhn, B.A., Ihle, J.N., and et al. (1994). Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science 266, 1045-1047. Miyazaki, T., Liu, Z.J., Kawahara, A., Minami, Y., Yamada, K., Tsujimoto, Y., Barsoumian, E.L., Permutter, R.M., and Taniguchi, T. (1995). Three distinct IL-2 signaling pathways mediated by bcl-2, c-myc, and lck cooperate in hematopoietic cell proliferation. Cell 81, 223-231. Mortier, E., Bernard, J., Plet, A., and Jacques, Y. (2004). Natural, proteolytic release of a soluble form of human IL-15 receptor alpha-chain that behaves as a specific, high affinity IL-15 antagonist. J Immunol 173, 1681-1688. Mortier, E., Quemener, A., Vusio, P., Lorenzen, I., Boublik, Y., Grotzinger, J., Plet, A., and Jacques, Y. (2006). Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J Biol Chem 281, 1612-1619. Mortier, E., Woo, T., Advincula, R., Gozalo, S., and Ma, A. (2008). IL-15Ralpha chaperones IL-15 to stable dendritic cell membrane complexes that activate NK cells via trans presentation. J Exp Med 205, 1213-1225. Musso, T., Calosso, L., Zucca, M., Millesimo, M., Ravarino, D., Giovarelli, M., Malavasi, F., Ponzi, A.N., Paus, R., and Bulfone-Paus, S. (1999). Human monocytes constitutively express membrane-bound, biologically active, and interferon-gamma-upregulated interleukin-15. Blood 93, 3531-3539. Nishimura, H., Hiromatsu, K., Kobayashi, N., Grabstein, K.H., Paxton, R., Sugamura, K., Bluestone, J.A., and Yoshikai, Y. (1996). IL-15 is a novel growth factor for murine gamma delta T cells induced by Salmonella infection. J Immunol 156, 663-669. Nishimura, H., Washizu, J., Nakamura, N., Enomoto, A., and Yoshikai, Y. (1998). Translational efficiency is up-regulated by alternative exon in murine IL-15 mRNA. J Immunol 160, 936-942. Ogasawara, K., Hida, S., Azimi, N., Tagaya, Y., Sato, T., Yokochi-Fukuda, T., Waldmann, T.A., Taniguchi, T., and Taki, S. (1998). Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391, 700-703. Ohteki, T., Ho, S., Suzuki, H., Mak, T.W., and Ohashi, P.S. (1997). Role for IL-15/IL-15 receptor beta-chain in natural killer 1.1+ T cell receptor-alpha beta+ cell development. J Immunol 159, 5931-5935. Ohteki, T., Yoshida, H., Matsuyama, T., Duncan, G.S., Mak, T.W., and Ohashi, P.S. (1998). The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-alpha/beta+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J Exp Med 187, 967-972. Olsen, S.K., Ota, N., Kishishita, S., Kukimoto-Niino, M., Murayama, K., Uchiyama, H., Toyama, M., Terada, T., Shirouzu, M., Kanagawa, O., and Yokoyama, S. (2007). Crystal Structure of the interleukin-15.interleukin-15 receptor alpha complex: insights into trans and cis presentation. J Biol Chem 282, 37191-37204. Onu, A., Pohl, T., Krause, H., and Bulfone-Paus, S. (1997). Regulation of IL-15 secretion via the leader peptide of two IL-15 isoforms. J Immunol 158, 255-262. Orengo, A.M., Di Carlo, E., Comes, A., Fabbi, M., Piazza, T., Cilli, M., Musiani, P., and Ferrini, S. (2003). Tumor cells engineered with IL-12 and IL-15 genes induce protective antibody responses in nude mice. J Immunol 171, 569-575. Pettit, D.K., Bonnert, T.P., Eisenman, J., Srinivasan, S., Paxton, R., Beers, C., Lynch, D., Miller, B., Yost, J., Grabstein, K.H., and Gombotz, W.R. (1997). Structure-function studies of interleukin 15 using site-specific mutagenesis, polyethylene glycol conjugation, and homology modeling. J Biol Chem 272, 2312-2318. Quinn, L.S., Haugk, K.L., and Damon, S.E. (1997). Interleukin-15 stimulates C2 skeletal myoblast differentiation. Biochem Biophys Res Commun 239, 6-10. Reinecker, H.C., MacDermott, R.P., Mirau, S., Dignass, A., and Podolsky, D.K. (1996). Intestinal epithelial cells both express and respond to interleukin 15. Gastroenterology 111, 1706-1713. Rozwarski, D.A., Gronenborn, A.M., Clore, G.M., Bazan, J.F., Bohm, A., Wlodawer, A., Hatada, M., and Karplus, P.A. (1994). Structural comparisons among the short-chain helical cytokines. Structure 2, 159-173. Ruchatz, H., Leung, B.P., Wei, X.Q., McInnes, I.B., and Liew, F.Y. (1998). Soluble IL-15 receptor alpha-chain administration prevents murine collagen-induced arthritis: a role for IL-15 in development of antigen-induced immunopathology. J Immunol 160, 5654-5660. Ruckert, R., Brandt, K., Braun, A., Hoymann, H.G., Herz, U., Budagian, V., Durkop, H., Renz, H., and Bulfone-Paus, S. (2005). Blocking IL-15 prevents the induction of allergen-specific T cells and allergic inflammation in vivo. J Immunol 174, 5507-5515. Sandau, M.M., Schluns, K.S., Lefrancois, L., and Jameson, S.C. (2004). Cutting edge: transpresentation of IL-15 by bone marrow-derived cells necessitates expression of IL-15 and IL-15R alpha by the same cells. J Immunol 173, 6537-6541. Schluns, K.S., Klonowski, K.D., and Lefrancois, L. (2004). Transregulation of memory CD8 T-cell proliferation by IL-15Ralpha+ bone marrow-derived cells. Blood 103, 988-994. Smith, K.A. (1988). Interleukin-2: inception, impact, and implications. Science 240, 1169-1176. Smith, X.G., Bolton, E.M., Ruchatz, H., Wei, X., Liew, F.Y., and Bradley, J.A. (2000). Selective blockade of IL-15 by soluble IL-15 receptor alpha-chain enhances cardiac allograft survival. J Immunol 165, 3444-3450. Stonier, S.W., and Schluns, K.S. (2009). Trans-presentation: A novel mechanism regulating IL-15 delivery and responses. Immunol Lett. Tagaya, Y., Kurys, G., Thies, T.A., Losi, J.M., Azimi, N., Hanover, J.A., Bamford, R.N., and Waldmann, T.A. (1997). Generation of secretable and nonsecretable interleukin 15 isoforms through alternate usage of signal peptides. Proc Natl Acad Sci U S A 94, 14444-14449. Tan, X., and Lefrancois, L. (2006). Novel IL-15 isoforms generated by alternative splicing are expressed in the intestinal epithelium. Genes Immun 7, 407-416. Tsytsikov, V.N., Yurovsky, V.V., Atamas, S.P., Alms, W.J., and White, B. (1996). Identification and characterization of two alternative splice variants of human interleukin-2. J Biol Chem 271, 23055-23060. Waldmann, T.A., and Tagaya, Y. (1999). The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 17, 19-49. Washizu, J., Nishimura, H., Nakamura, N., Nimura, Y., and Yoshikai, Y. (1998). The NF-kappaB binding site is essential for transcriptional activation of the IL-15 gene. Immunogenetics 48, 1-7. Wei, X., Orchardson, M., Gracie, J.A., Leung, B.P., Gao, B., Guan, H., Niedbala, W., Paterson, G.K., McInnes, I.B., and Liew, F.Y. (2001). The Sushi domain of soluble IL-15 receptor alpha is essential for binding IL-15 and inhibiting inflammatory and allogenic responses in vitro and in vivo. J Immunol 167, 277-282. Yokoyama, S., Watanabe, N., Sato, N., Perera, P.Y., Filkoski, L., Tanaka, T., Miyasaka, M., Waldmann, T.A., Hiroi, T., and Perera, L.P. (2009). Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes. Proc Natl Acad Sci U S A 106, 15849-15854. Zhang, X., Sun, S., Hwang, I., Tough, D.F., and Sprent, J. (1998). Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591-599. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47248 | - |
| dc.description.abstract | 介白質-15 (interleukin-15, IL-15) 為多效性的細胞激素,在免疫細胞的功能及恆定性扮演重要的角色。IL-15蛋白的表現已知在轉錄與轉譯的過程都必須受到嚴格的調控,究竟已報導的IL-15選擇性剪接異構體是否也參與此一調控的過程仍不清楚。
本論文首先分析IL-15異構體的生化特性,我們將原型IL-15與IL-15ΔE7的cDNA選殖到表達質體,藉由N端的IL-2 leader peptide增加分泌性與C端的FLAG為蛋白標記,經由轉染到COS-7細胞株中探討兩者在蛋白質表現、分泌性、細胞表現位置與生物活性等方面的差異。利用西方墨點法結合內糖苷酶 (endoglycosidase H, Endo H) 分析,雖然IL-15異構體和原型IL-15都具有Endo H的敏感性,但是醣類修飾的程度可能不同;進一步以酵素結合免疫吸附分析 (ELISA) 測得IL-15異構體在細胞中或分泌至細胞外的量都相對較低;而且利用免疫螢光染色觀察到大部分的IL-15異構體都累積在內質網。分泌出細胞外的IL-15異構蛋白不僅不具有生物活性,還能抑制原型IL-15的生物活性。接著我們針對IL-15 受體的 alpha 次單元 (IL-15Rα) 探討IL-15異構體的作用機制,利用流式細胞分析技術發現雖然原型IL-15能增加IL-15Rα在細胞表面的表現,但是IL-15異構體卻能抑制IL-15增強IL-15Rα表現的作用;另外,將IL-15異構體與IL-15Rα共同轉染至細胞中,發現IL-15Rα會累積在細胞中而無法運輸至細胞膜上。這些結果暗示IL-15異構體可能藉由降低IL-15Rα在細胞膜的表現量而抑制trans-presentation的訊息傳遞。 總之,本實驗發現,累積在內質網的IL-15異構體無法有效分泌至細胞外,一旦分泌出細胞外,極低量的IL-15異構體可能藉由降低IL-15Rα在細胞膜上的表現而影響原型IL-15的訊息傳遞。這些現象將有助於未來進一步了解IL-15在體內的調控機制。 | zh_TW |
| dc.description.abstract | Interleukin 15 (IL-15) is a pleiotropic cytokine which plays an essential role in innate and adaptive immune cell function and homeostasis. Expression of IL-15 protein is known to be tightly controlled at transcriptional and translational levels. Whether alternative pre-mRNA splicing is also involved in regulating IL-15 function is not clear.
In this study, the biochemical properties and biological functions of IL-15ΔE7 which is encoded from an alternatively spliced mRNA having partial deletion in the exon 7 of IL-15 gene were assessed in vitro. The full length of IL-15 and IL-15ΔE7 cDNAs encoding the mature protein was cloned individually in an expression plasmid flanked with IL-2 leader peptide at the N-terminus and a FLAG tag at the C-terminus and were expressed in COS-7 cells by transient transfection method. Both IL-15 and IL-15ΔE7 were sensitive to Endo H treatment. However, their banding patterns on SDS-PAGE were different by Western blotting, suggesting the post-translational modifications on these proteins were different. Most of the IL-15ΔE7 protein retained intracellularly and accumulated in the ER as identified by colocalization with ER chaperone calnexin. Very few IL-15ΔE7 protein was secreted and failed to support HT-2 cell proliferation as well as inhibited the biological activity of IL-2 and IL-15 in a dose dependent manner. In addition, flow cytometric analysis showed that the exogenous addition of IL-15ΔE7 reduced the upregulation of surface IL-15 receptor α (IL-15Rα) induced by IL-15. Co-transfection of IL-15ΔE7 and IL-15Rα led to the intracellular accumulation of IL-15Rα which might inhibit the trans-presentation by limiting expression of IL-15Rα on the cell surface. In summary, IL-15ΔE7 was accumulated in the ER without efficient secretion. Once secreted, the extremely low amount of IL-15ΔE7 may have a regulatory role for IL-15 signaling by limiting IL-15Rα surface expression. The functional mechanism as well as the biological significance of this alternative splice variant remain to be clarified. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:52:15Z (GMT). No. of bitstreams: 1 ntu-99-R97449002-1.pdf: 4588999 bytes, checksum: c7e10787d65c6dcda91d53b6c06355dc (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Abstract i
Abstract (Chinese) iii Abbreviations iv Table of Contents v List of Figures viii Chapter I. Introduction 1 Part I. Interleukin 15 (IL-15) 1 1. Biology 1 2. IL-15 mRNA isoforms and transcriptional control 2 3. Structure of IL-15 mature protein, translational control, and post-translational modification 4 Part II. IL-15 receptor (R) complex and IL-15 signal transduction pathway 5 Part III. IL-15/IL-15Rα trans-presentation 9 Part IV. IL-15 and human disease 11 Chapter II. Aims of The Study 14 Chapter III. Materials and Methods 16 Part I. Methods 16 1. Cell lines and cell culture 16 2. Construction of IL-15 and IL-15ΔE7 isoform expression vectors 16 3. COS-7 cell transfection and supernatant and lysate collection 17 3.1 COS-7 cell transfection 17 3.2 Supernatant and lysate collection 17 4. Immunoprecipitation, endoglycosidase H analyses, and Western blotting 17 4.1 Immunoprecipitation 18 4.2 Endoglycosidase H analyses 18 4.3 Western blotting 18 5. Immunofluorescence staining of intracellular IL-15 protein 19 6. IL-15 enzyme-linked immunosorbent assays 19 7. IL-15 biological assay using HT-2 cells 20 7.1 The biological activity of IL-15ΔE7 isoform 20 7.2 The inhibitory effect of IL-15ΔE7 isoform on wild type IL-15 or IL-2 20 8. Flow cytometry analysis 21 8.1 IL-2 or IL-15 receptor expression on HT-2 cells 21 8.2 The effect of IL-15ΔE7 isoform on IL-15-mediated IL-15R expression 22 Part II. Materials 23 1. Antibodies 23 1.1 Unconjugated antibodies 23 1.2 Fluorochrome-conjugated antibodies 23 1.3 Horseradish peroxidase- (HRP) or alkaline phosphatase (AP)-conjugated antibodies 24 2. PCR primers 24 3. Solutions 25 Chapter IV. Results 28 1. Molecular cloning of murine IL-15, IL-15ΔE7 isoform, and IL-15Rα 28 2. The comparisons of IL-15 protein expression, glycosylation, bioactivity, and cellular localization with IL-15L or IL-2L 28 3. Different protein expression pattern of IL-15 and IL-15ΔE7 isoform 31 4. ER-retained species of IL-15 and IL-15ΔE7 isoform exist in COS-7 cells 32 5. The poor efficiency in the generation of cellular and secreted IL-15ΔE7 isoform 33 6. Functional analysis of IL-15ΔE7 isoform 34 7. IL-15ΔE7 isoform accumulates close to the trans-Golgi network (TGN) 35 8. IL-15ΔE7 isoform colocalizes with the ER chaperone calnexin 35 9. Possible regulatory functions of IL-15ΔE7 isoform 37 10. IL-15ΔE7 isoform inhibits the upregulation of surface IL-15Rα expression induced by rIL-15 39 11. Co-transfection of IL-15ΔE7 and IL-15Rα leads to the accumulation of IL-15Rα 40 12. Interaction of IL-15ΔE7 with IL-15Rα 41 Chapter V. Discussion 43 1. The regulatory functions of IL-15ΔE7 isoform 43 2. The biological relevance of IL-15ΔE7 isoform 47 3. The differences in the biochemical properties and biological functions of IL-15 and IL-15ΔE7 isoform protein 49 4. Conclusions 52 References 55 Figures 66 Appendix 84 | |
| dc.language.iso | en | |
| dc.subject | 介白質-15受體 | zh_TW |
| dc.subject | 內質網 | zh_TW |
| dc.subject | 介白質-15 | zh_TW |
| dc.subject | 異構蛋白 | zh_TW |
| dc.subject | isoform | en |
| dc.subject | endoplasmic reticulum | en |
| dc.subject | IL-15 receptor | en |
| dc.subject | interleukin-15 | en |
| dc.title | 探討介白質-15異構蛋白的特性與功能 | zh_TW |
| dc.title | Biochemical and functional analysis of
an IL-15 alternative splice variant | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 繆希椿,鄭貽生,黃佩欣 | |
| dc.subject.keyword | 介白質-15,異構蛋白,介白質-15受體,內質網, | zh_TW |
| dc.subject.keyword | interleukin-15,isoform,IL-15 receptor,endoplasmic reticulum, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
