Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47235
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立昇(Li-Shen Wang)
dc.contributor.authorShen-Lin Pengen
dc.contributor.author彭聖霖zh_TW
dc.date.accessioned2021-06-15T05:51:48Z-
dc.date.available2010-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-17
dc.identifier.citation[1] S. L. Veherencamp, “Individual, kin, and group selection,” in Handbook of Behavioural Neurobiology, Vol. 3, Social Behavior and Communication, 1987.
[2] J. M. Cullen, E. Shaw & H. A. Baldwin, “Methods for Measuring the Three-Dimensional Structure of Fish Schools,” Animal Behavior, Vol. 13, pp. 534-543, 1965.
[3] J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Millter & S. J. Simpson,“From Disorder to Order in Marching Locusts,” Science, Vol. 312, pp. 1401-1406, 2006.
[4] R. G. Brown & J. S. Jennings, “A Pusher/Steerer Model for Strongly Cooperative Mobile Robot Manipulation,” IEEE Int’l Conf. Robots and Systems, Vol. 3, pp. 562-568, 1995.
[5] J. Huang, S. M. Farritor, A. Qadi & S. Goddard, “Localization and Follow-the Leader Control of a Heterogeneous Group of Mobile Robots,” IEEE Trans. Mechatronics, Vol. 11, No. 2, Apr. 2006.
[6] P. Misra & P. Enge, Global Positioning System, Ganga-Jamuna, Lincoln, MA, 2006
[7] T. Balch & R. Arkin, “Behavior-based Formation Control for Multi-robot Teams,” IEEE Trans. Robotics and Automation, Vol. 14, pp. 926-939, Dec. 1999.
[8] M. Allen, J. Ryan, C. Hanson & J. Parle, “String Stability of a Linear Formation Flight Control System,” NASA, Technical Memorandum NASA-TM-2002-210733, Aug. 2002.
[9] M. B. Milam, N. Petit & R. Murray, “Constrained Trajectory Generation for Micro-satellite formation Flying,” AIAA Guid., Nav., & Contr., Conf., 2001.
[10] I. Ihle, J. Jouffroy & T. I. Fossen, “Formation Control of Marine Surface Craft: A Lagrangian Approach,” IEEE J. Ocean. Eng., Vol. 31, No. 4, pp. 922-934, 2006.
[11] M. Porfiri, D. G. Roberson & D. J. Stilwell, “Tracking and formation control of multiple autonomous agents: A two-level consensus approach,” Automatica, Vol. 43, pp. 1318-1328, 2007.
[12] J. Latombe, Robot Motion Planning, Kluwer, Boston, MA, 1991.
[13] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki & S. Thrun, Principles of Robot Motion, MIT, Cambridge, Massachusetts London, England, 2005.
[14] R. Brooks and T. Lazano-Perez, “A Subdivision Algorithm in Configuration Space for Find-path with Rotation,' IEEE Trans. System, pp.799-806, 1983.
[15] J. Barraquand, B. Langois, and J. C. Latombe, “Numerical potential field techniques for robot path planning,” IEEE Tran. Robotics and Automation, Vol. 22, No 2, pp.224-241, 1992.
[16] L. Kavraki, P.Svestka, J. Latombe, and M. Overmars, 'Probabilistic Roadmaps for Fast Path Planning in High-Dimensional Configuration Spaces,' IEEE Trans. Robotics and Automation, Vol. 12, pp. 566-580, 1996.
[17] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” TR 98-11, Computer Science Dept., Iowa State University, 1998.
[18] S. M. Lavalle, Planning Algorithm, Cambridge University Press.
[19] J. J. Kuffner & S. M. Lavalle, “RRT-Connect: An Efficient Approach to Single-Query Path Planning,” IEEE Int’l Conf. Robotics and Automation, 2000.
[20] R.W. Beard, J. Lawton, & F.Y. Hadaegh, “A Coordination Architecture for Spacecraft Formation Control,” IEEE Trans. Control Systems Tech., Vol. 9, No. 6, pp. 777-790, Nov. 2001.
[21] S. Singh, M. Pachter, P. Crandler, S. Banda, S. Rasmussem, & C. Schumacher, “Input-Output Invertibility and Sliding Mode Control for Close Formation Flying of Multiple UAVs,” Inter. J. Robust and Nonlinear Control, Vol. 10, pp. 779-797, 2000.
[22] B. J. Young, R. W. Beard, & J. M. Kelsey, “A Control Scheme for Improving Multi-vehicle Formation Maneuvers,” in Amer. Contr. Conf., pp.704-709, 2001.
[23] M. Veloso, M. Bowling, S. Achim, K. Han & P. Stone, “The CMUnited-98 Champion Small Robot Team,” in RobotCup-98: Robot Soccer World Cup II, ed. M. Asada, H. Kitano, Springer-Verlag, 1999.
[24] I. F. Ihle, J. Jouffroy, & T. I. Fossen, “Formation control of marine surface craft: A lagrangian approach,” IEEE J. Ocean.Eng., Vol. 31, No. 4, pp. 922-934, 2006.
[25] M. Porfiri, D. G. Roberson & D. J. Stilwellb, “Tracking and formation control of multiple autonomous agents: A two-level consensus approach,” Automatica, Vol. 43, No. 8 pp. 1318-1328, 2007.
[26] S. Carpin & L. Parker, “Cooperative leader following in a distributed multi-robot system,” in Proc. IEEE Int. Conf. Robotics & Automation, Vol. 3, pp. 2994-3001, 2002.
[27] J. Shao, G. Xie, J. Yu, & L. Wang, “Leader-following formation control of multiple mobile robots,” in Proc. IEEE/RSJ Int. Symp. Intelligent Control, pp. 808-813, 2005.
[28] L. E. Parker, “On the design of behavior-based multi-robot teams,” J. Adv. Robotics, Vol. 10, No. 6, pp. 547-578, 1996.
[29] C. R. McInnes, “Autonomous ring formation for a planar constellation of satellites,” AIAA J. Guidance, Contr., and Dyn., Vol. 18, No. 5, pp. 1215-1217, 1995.
[30] T. Eren, P. N. Belhumeur, & A. S. Morse, “Closing ranks in vehicle formations based rigidity,” in Proc. IEEE Conf. Decision and Control, Vol. 3, pp. 2959-2961, 2002.
[31] C. Belta & V. Kumar, “Abstraction and control for groups of robots,” IEEE Trans. Robotics, Vol. 20, No. 5, pp. 865-875, 2004.
[32] J. J. Slawianowski, “Analytical mechanics of finite homogeneous strains,” Arch. Mech., Vol. 26, No. 4, pp. 569-587, 1974.
[33] H. Cohen, Pseudo-rigid bodies. Utilitas Math., Vol. 20, pp. 221-247, 1981.
[34] R.G. Muncaster, “Invariant manifolds in mechanics I: the general construction of coarse theories from fine theories,” Arch. Rational Mech. Anal., Vol. 84, pp. 353-373, 1984.
[35] H. Cohen & R. G. Muncaster, The Theory of Pseudo-rigid Bodies, Springer-Verlag New York Inc., 1988.
[36] D. Lewis & J. C. Simo, “Nonlinear stability of rotating pseudo-rigid bodies,” in Proc. Roy. Soc. Lon., A 427, pp. 281-319, 1990.
[37] M. Epstein, & R. I. Defaz, “The pseudo-rigid rolling coin,” J. of Applied Mechanics, Vol. 72, pp. 695-704, 2005.
[38] H. M. Peng, L. S. Wang, & Y. H. Pao, “Dynamic Characteristics of Pseudo-Rigid Motions,” Submitted for publication, 2007.
[39] S. L. Hsu, H. M. Peng & L. S. Wang, “Modeling of Radius-varying Wheels as Pseudo-Rigid Bodies and their Stability,” Proceedings of the 2007 Cross-Strait Workshop on Controls, 2007.
[40] W. K. Liu, & L. S. Wang, “Pseudo-rigid formation design,” submitted for journal puplication.
[41] T. Vicsek, A. Czirok, E. B. Jacob, & I. Cohen, “Novel type of phase transition in a system of self-driven particles,” Phys. Rev. Let., Vol. 75, pp. 1226-1229, 1995.
[42] Y. M. Chen & Y. Tsui, “Limitations to the large strain theory. ” Int. J. for Num. Meth. in Eng., 33:101-114, 2001.
[43] M. Clifton, G. Paul, N. Kwok, D. Liu & D. Wang, “Evaluating Performance of Multiple RRTs,”
[44] L. Piegl & W. Tiller, The NURBS book, Springer, 1996.
[45] D. F. Rogers, An Introduction to NURBS: With Historical Perspective, Morgan, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47235-
dc.description.abstract本研究之主要目的為發展一套具有可變隊形以及避障功能之多載具路徑規劃方案。我們將擬剛體的形變理論應用在多載具的編隊設計上,使得整個隊伍的形狀可由一組空間齊性形變參數來規範,我們將它稱為擬剛體隊伍。擬剛體隊伍容許旋轉、拉伸、切變以及前面三種形變之組合,相較於剛體隊形,我們的隊伍較能夠適應複雜環境的需求,且同時保有極佳的隊形維持能力。此外我們所提出的編隊設計方案還有另一項優點,即隊伍中載具的數目不受限制,不管是載具的新增或減少,皆不會造成求解形變參數時的困擾。在整套路徑規劃方案中,利用快速探索隨機樹(RRT)並配合軌跡平滑以及虛擬障礙物法做全域性的路徑篩選後,建構出一條符合載具曲率限制的隊伍中心路徑,最後藉由這條路徑並透過擬剛體隊形來完成多載具的路徑規劃。我們所提出的多載具路徑規劃方案,可適應於多種不同的環境並保持隊伍的整體性。根據實例設計結果,我們所提出的方案是可行且有效的。zh_TW
dc.description.abstractThe main purpose of this research is to develop a path planning scheme for multi-vehicle systems, which can produce collision-free paths for the vehicles in the system by changing the formation of system. We apply the pseudo-rigid body theory to the formation design. The formation of system can be determined by a homogenous deformation tensor. Such concept is called the Pseudo-Rigid Formation (PRF). PRF are allowed to rotate, stretch, shear and the combinations of the previous three types of deformation. Comparing with rigid body formation, PRF can adapt to the environments more easily during path planning, and PRF also has a good ability of maintaining the uniformity of system. Another feature of our approach is that it allows to add/remove other vehicles into/from the formation gracefully. And the number of vehicles in the system will not affect the complexity of calculating the deformation tensor. In order to obtain a smooth path for the center of formation and reserve enough space for the formation design, the method of Rapidly-exploring Random Tree (RRT) is used along with some path-smoothing algorithms and potential field methods. The concept of virtual obstacles is introduced to deal with the limitations of the capability of the vehicles in tracing the curved paths. A few design criteria are then adopted to find the suitable PRF. Our approach can be used in many environments without the problem of trapping in local minimum. The design examples show that the proposed scheme is feasible and effective.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:51:48Z (GMT). No. of bitstreams: 1
ntu-99-R97543012-1.pdf: 2554792 bytes, checksum: c3a9ca336ca94fcb7579331d86bd4431 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 單載具路徑規劃 2
1.2.2 多載具路徑規劃 4
1.2.3 擬剛體簡介 5
1.3 問題定義 6
1.4 論文架構 8
第二章 擬剛體運動與隊形 9
2.1 擬剛體的特性 9
2.2 擬剛體隊形表示法 12
第三章 路徑規劃 15
3.1 快速探索隨機樹(Rapidly-Exploring Random Tree) 15
3.1.1 碰撞檢查(Collision Check) 17
3.1.2 快速探索隨機樹 17
3.1.3 多快速探索隨機樹(Multi-RRT) 19
3.1.4 路徑縮短 20
3.2 區域性路徑調整 21
3.2.1 虛擬力場的建立 21
3.2.2 力場的調整 23
3.3 貝茲曲線平滑 24
3.3.1 貝茲曲線(Bézier curve) 25
3.3.2 分段式貝茲曲線 28
3.4 全域性路徑調整 31
3.4.1 禁止路徑 32
3.4.2 虛擬障礙物 33
第四章 擬剛體編隊設計 36
4.1 擬剛體隊形設計 36
4.1.1 有效區域內障礙物 36
4.1.2 隊伍形變張量求解 38
4.2 多載具路徑規劃 40
第五章 模擬結果與討論 50
5.1 隊形設計範例 50
5.1.1 最小迴轉半徑與路徑分佈 50
5.1.2 二維隊形設計範例 52
5.1.3 路徑規劃時間 54
5.1.4 RRTs數目對於路徑規劃花費時間的影響 55
第六章 結論與未來工作 57
參考文獻 59
dc.language.isozh-TW
dc.title快速探索隨機樹輔助之擬剛體編隊設計zh_TW
dc.titleRRT-Assisted Pseudo-Rigid Formation Designen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor張帆人(Fan-Ren Chang)
dc.contributor.oralexamcommittee連豊力(Feng-Li Lian),王伯群(Bo-Chyun Wang),練光祐(Guang-You Lian)
dc.subject.keyword擬剛體,隊形設計,無人載具,路徑規劃,zh_TW
dc.subject.keywordPseudo-Rigid Body,Formation,Unmanned Vehicle,Path Planning,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
2.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved