Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47210
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇(Guang-Yu Guo)
dc.contributor.authorYi-Yu Wuen
dc.contributor.author吳一宇zh_TW
dc.date.accessioned2021-06-15T05:50:56Z-
dc.date.available2012-08-19
dc.date.copyright2010-08-19
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citation[1] Faraday, M. Philos. Trans. R. Soc. London 1857, 147, 145.
[2] Mie, G. Ann. Phys. 25, 377 (1908).
[3] Kerker, M. The Scattering of Light and Other Electromagnetic Radiation; Aca-
demic : New York, 1983.
[4] Bohren, C. F. : Huffman, D. R. Absorption and Scattering of Light by Small
Particles; Wiley Interscience : New York, 1983
[5] (a) Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer Series
in Materials Science 25; Springer : Berlin, 1995. (b) Kreibig, U. In Handbook
of Optical Properties; Vol. II : Optics of Small Particles, Interfaces and Surfaces;
Hummel, R. E., Wissmann, P., Eds.; CRC Press : Boca Raton, 1997; pp145-190
[6] (a) Mirklin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature, 382, 607
(1996). (b) Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin,
C. A. Science, 277, 1078 (1997).
[7] (a) Quinten, M.; Leitner, A.; Krenn, J. R.; Aussenegg, F. R. Opt. Lett., 23, 1331
(1998). (b) Brongersma, M. L.; Hartman, J. W.; Atwater, H. A. Phys. Rev. B 2000,
62, 16356.
[8] R. Ruppin and R. Englman, Rep. Prog. Phys. 33, 149 (1970).
[9] U. Kreibig, J. Phys. F : Metal Phys. 4, 999 (1974).
[10] de Abajo, F. J. G. Rev. Mod. Phys., 79, 1267 (2007).
[11] Fromm, D. P.; Sundaramurthy, A.; Schuck, P. J.; Kino, G; Moerner, W. E. Nano
Lett., 4, 957 (2004)
[12] Kuhn, S.; Hakanson, U.; Rogobete, L.; Sandoghdar, V. Phys. Rev. Lett, 97, 017402
(2006).
[13] Merlein, J.; Kahl, M.; Zuschlag, A.; Sell, A.; Halm, A.; Boneberg, J.; Leiderer, P.;
Leitenstorfer, A.; Bratschitsch, R. Nat. Photon., 2, 230 (2008).
[14] Yang, J.; Zhang, J.; Wu, X.; Gong, Q. Opt., 15, 16852 (2007).
[15] Muhlschlegel, P.; Eisler, H. J.; Martin, O. J. F.; Hecht, B; Pohl, D. W. Science,
308, 160(2005).
[16] Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z. Y.; Au, L.; Zhang,
H.; Kimmey, M. B.; Li, X. D.; Xia, Y. Nano Lett., 5, 473 (2005).
[17] Chen, J. Y.; Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee,
J.; Li, X. D.; Xia, Y. N. Adv. Mater., 17, 2255 (2005).
[18] Hu, M.; Chen, J. Y.; Li, Z. Y.; Au, L.; Hartland, G. V.; Li, X. D.; Marqwuez, M.;
Xia, Y. N. CHem. Soc. Rev., 35, 1084 (2006).
[19] Tribelsky, M. I.; Luk’yanchuk, B. S. Phys. Rev. Lett., 97, 263902 (2006).
[20] Chen, J. Y.; Wang, D. L.; Xi, J. F.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z. Y.;
Zhang, H.; Xia, Y. N.; Li, X. D. Nano Lett., 7, 1318 (2007).
[21] Yang, X. M.; Skrabalak, S. E.; Li, Z. Y.; Xia, Y. N.; Wang, L. H. V. Nano Lett.,
7, 3798(2007).
[22] Khlebtsov, B.; Zharov, V.; Melnikov, A.; Tuchin, V.; Khlebtsov, N. Nanotechnol-
ogy, 17, 5167 (2006).
[23] McLellan, J. M.; Li, Z. Y.; Siekkinen, A. R.; Xiz, Y. N. Nano Lett., 7, 1013 (2007).
[24] Nie, S. M.; Emery, S. R. Science, 275, 1102 (1997).
[25] Doering, W. E.; Nie, S. M. J. Phys. Chem. B, 106, 311 (2002).
[26] Zhang, J.; Malicka, J.; Gryczynski, I.; Lakowicz, J. R. J. Phys. Chem. B, 109, 7643
(2005).
[27] Chern, R. L.; Liu, X. X.; Chang, C. C. Phys. Rev. E, 76, 016609 (2007).
[28] Wiley, B.; Sun, Y. G.; Chen, J. Y.; Cang, H.; Li, Z. Y.; Li, X. D.; Xia, Y. N. MRS
Bull., 30, 356 (2005).
[29] Hao, E.; Schatz, G. C. J. Chem, Phys, 120, 357 (2004).
[30] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B, 107, 668
(2003).
[31] Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B,
105, 2343 (2001).
[32] Zhang, Z. Y.; Zhao, Y. P. J. Appl. Phys., 102, 113308 (2007).
[33] Payne, E. K.; Shuford, K. L.; Park, S.; Schatz, G. C.; Mirkin, C. A. J. Phys. Chem.
B, 110, 2150 (2006).
[34] He, Y.; Shi, G. Q. J. Phys. Chem. B, 109, 17503 (2005).
[35] Sun, Y. G.; Xia, Y. N. Science, 298, 2176 (2002).
[36] Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N.; Yin, Y. D.; Li, Z. Y. Nano Lett.,
5, 123 (2005).
[37] H. DeVoe, J. Chem. Phys. 41, 393-400 (1964).
[38] H. DeVoe, J. Chem. Phys. 43, 3199-3208 (1965).
[39] E. M. Purcell and C. R. Pennypacker, Astrophys. J. 186, 705-741 (1973).
[40] B.T. Draine, Astrophys. J. 333, 848-872(1998)
[41] http://arxiv.org/abs/0809.0337v4
[42] Bruce T. Draine and Piotr J. Flatau, Opt. 25, 11 (2008)
[43] J. J. Goodman, B. T. Draine, and P. J. Flatau, Opt. Lett. 16, 1198-1200(1991).
[44] T. K. Sarkar, X. Yang, and E. Arvas, Wave Motion 10, 527-546 (1988).
[45] Merical implementation of the conjugate gradient method and the CG-FFT for
electromagnetic scattering,” in Application of Conjugate Gradient Method to Elec-
tromagnetics and Signal Processing, T. K. Sarkar, ed. (Elsevier, New York, 1991),
Chap. 5.
[46] R. W. Freund and N. M. Nachtigal, Numer. Math. 60, 315-339 (1991).
[47] R. Fushs, Phys. Rev. B 11, 1732 (1975).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47210-
dc.description.abstract當電磁波照射在金屬奈米顆粒之上時,電磁波會與金屬上的自由電子產生耦合,產生侷域性表面電漿。侷域性表面電漿的產生,與金屬奈米顆粒的形狀、大小、結構、處在環境有關。由於這項獨特的性質,金屬奈米顆粒可應用於電場增益之上,為了能夠更廣泛地應用這項性質,我們必須更深入研究金屬奈米顆粒的光學性質。
本論文中,我們用DDA (Discrete Dipole Approximation)來模擬一些不同大小的金屬奈米立方體 (如:銀、金、鈉)的光學性質。我們發現,這些立方體的頻譜圖中有多個共振頻率產生,異於單顆金屬球的結果。共振頻率的發生與金屬的材料有很大的關係。銀和鈉的光譜圖中,波峰比較高、窄而且比較尖銳,而對其他的金屬 (如:鈀、鉑),光譜波峰則比較低、寬,這是由於銀、金的光學吸收比鈀、鉑等金屬材料低。當立方體的尺寸夠小的時候,延遲效應的影響可以忽略不計,當立方體的尺寸大到一定程度時,我們勢必要考慮延遲效應的影響。
鈉雙球的光學性質與兩球之間的間距、球的大小有很大的關係。對L-mode而言,入射電場與球的軸心方向平行,電磁波朝著兩球中心入射,當兩球的間距變大時,共振波長變短,且共振波長由原先的兩個波長,變為只有一個共振波長。對T-mode 而言,電磁波同樣朝著兩球中心入射,而電場與球的軸心方向垂直,在這種情況下,當兩球的間距變大時 ,共振波長則變長。本論文中所模擬的金屬鈉的半徑為30 奈米,兩球的間距由5 奈米增長至30 奈米。
zh_TW
dc.description.abstractLocalized surface plasmon resonances (LSPR) appears in a metallic nanoparticle when the nanoparticle interacts with the incident electromagnetic field and creates coherent oscillations of its conduction electrons. The LSPRs depend on the shape, size, composition of nanoparticles and even
environment where the nanoparticles reside. Because of this unique property, plasmonic nanoparticles are useful for enhancement of fluorescence and Raman scattering of a single molecule.
To understand the design rules for practical applications, the plasmonic properties of a single nanoparticle would need to be understood in greater details.
In this thesis, plasmonic excitations in several metal (Ag, Au, Na) nanocubes with different sizes have been studied by both discrete dipole approximation(DDA) calculations and quasi-static theory analysis. We find that unlike a single metallic nanosphere, there are multiple plasmon peaks in the optical spectra of the metallic nanocubes. The positions of peaks of these plasmon excitations
depend strongly on the constituent material. The plasmonic excitation features are very sharp in the
Ag and Na nanocubes, but in the Pd and Pt nanocubes, they are very broad and weaker than the
former, due to the strong damping caused by the large imaginary part of the dielectric constant of
bulk Pd and Pt metals. We also find that the retardation effect is very small for the nanocubes whose
edge size is less than 30 nm where the extinct spectra are nearly independent of the cube size. In
contrast, for the larger nanocubes, the retardation effect is rather pronounced, and the plasmonic
features are significantly red-shifted.
The optical properties of a Na dimer are sensitive to the gap between the dimer spheres, the
radius of the spheres, and the orientation of the dimer. If we first put the direction of polarization of
incident electromagnetic wave parallel to the axis of Na dimer, the gap increases, the localized
surface plasmon resonance decreases. And the number of peaks decreased simultaneously, from two
peaks to one peak. We repeated the simulation again, but with the direction of polarization of the
incident electromagnetic wave and the axis of Na dimer perpendicular to each other. At this mode,
just one resonance frequency occurs. As the gap between Na spheres increases, the resonance
frequency increases, too. In last mode in which the direction of incident wave was parallel to the
axis of the Na dimer, as the distance of the gap increases, the resonance frequency increases, which
is similar to the second mode. The radius of the Na sphere is 30nm in all cases, and the gap between
the Na spheres varies from 5nm to 30nm.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:50:56Z (GMT). No. of bitstreams: 1
ntu-99-R97245009-1.pdf: 7869130 bytes, checksum: 027eae9f280d6273b24e9e6513735c79 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents1 Introduction 8
2 Theory and Method 11
2.1 Discrete Dipole Approximation (DDA) . . . . . . . . . . . . . . . . . . . 11
2.2 Surface Plasmon Resonance of Spherical Nanoparticles . . . . . . . . . . 13
2.2.1 Dipole Surface Plasmon Resonance . . . . . . . . . . . . . . . . . 13
2.2.2 Quadrupole Surface Plasmon Resonance . . . . . . . . . . . . . . 15
2.3 Solving Scattering Problem by DDA . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Complex-Conjugate Gradient Method . . . . . . . . . . . . . . . . 18
3 Surface Plasmon Resonance : Size, Shape, and Material Dependence 20
3.1 Surface Plasmon Resonance of Ag : Size Dependence . . . . . . . . . . . 20
3.2 Surface Plasmon Resonance of Au : Shape Dependence . . . . . . . . . . 23
3.3 Surface Plasmon Resonance of different material : Material Dependence . 23
4 Surface Plasmon Resonance of Sphere Dimers 26
4.1 Na sphere dimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Case I : Symmetric mode . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Case II : Longitudinal mode . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Case III : Transverse mode . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Surface Plasmon Resonances of metallic Nanocubes 36
6 Summary 54
Bibliography 56
dc.language.isoen
dc.title金屬奈米顆粒的光學性質之電磁模擬zh_TW
dc.titleElectromagnetic simulations of the optical properties of metal nanoparticlesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡定平(Din-Ping Tsai),梁培德(Pui-Tak Leung),劉威志(Wei-Chih Liu)
dc.subject.keyword奈米顆粒,光學性質,zh_TW
dc.subject.keywordnanoparticles,optical properties,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
7.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved