請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47205完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁博煌 | |
| dc.contributor.author | Wei-Chi Kuo | en |
| dc.contributor.author | 郭威志 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:50:47Z | - |
| dc.date.available | 2010-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-18 | |
| dc.identifier.citation | REFERENCES
1. Sullivan KF. Structure and utilization of tubulin isotypes. Annu Rev Cell Biol 1988;4:687-716. 2. Linse K, Mandelkow EM. The GTP-binding peptide of beta-tubulin. Localization by direct photoaffinity labeling and comparison with nucleotide-binding proteins. J Biol Chem 1988;263:15205-10. 3. Mandelkow E, Mandelkow EM. Microtubular structure and tubulin polymerization. Curr Opin Cell Biol 1990;2:3-9. 4. Sharp DJ, Rogers GC, Scholey JM. Microtubule motors in mitosis. Nature 2000;407:41-7. 5. Sawin KE, Endow SA. Meiosis, mitosis and microtubule motors. Bioassays 1993;15:399-407. 6. Vyas DM, Kadow JF. Paclitaxel: a unique tubulin interacting anticancer agent. Prog Med Chem 1995;32:289-337. 7. Gigant B, Wang C, Ravelli RB et al. Structural basis for the regulation of tubulin by vinblastine. Nature 2005;435:519-22. 8. Uppuluri S, Knipling L, Sackett DL, Wolff J. Localization of the colchicine-binding site of tubulin. Proc Natl Acad Sci U S A 1993;90:11598-602. 9. Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev 2008;28:155-83. 10. Yukio Nihei, Manabu Suzuki, Akira Okano, Takashi Tsuji, Yukio Akiyama,Takashi Tsuruo, Sachiko Saito, Katsuyoshi Hori, Yasufumi Sato. Evaluation of antivascular and antimitotic Effects of tubulin binding agents in solid tumor therapy. Cancer Res 1999;90:1387–1395 11. Roisean E. Ferguson, Claire Taylor, Anthea Stanley, Elizabeth Butler, Adrian Joyce, Patricia Harnden, Poulam M. Patel, Peter J. Selby and Rosamonde E. Banks. Clinical Cancer Research 2005;11:3439-3445 12. Lin Y, Tsai WP, Liu HG, Liang PH. Intracellular β-tubulin/Cherperonin containing TCP1-β complex serves as a novel chemotherapeutic target against drug-resistant tumors. Cancer Res 2009;69:6879-88. 13. Llorca O, Martin-Benito J, Gomez-Puertas P et al. Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. J Struct Biol 2001;135:205-18. 14. Liou AK, Willison KR. Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes. EMBO J 1997;16:4311-6. 15. Won KA, Schumacher RJ, Farr GW, Horwich AL, Reed SI. Maturation of human cyclin E requires the function of eukaryotic chaperonin CCT. Mol Cell Biol 1998;18:7584-9. 16. Guenther MG, Yu J, Kao GD, Yen TJ, Lazar MA. Assembly of the SMRT-histone deacetylase 3 repression complex requires the TCP-1 ring complex. Genes Dev 2002;16:3130-5. 17. Siegers K, Bolter B, Schwarz JP, Bottcher UM, Guha S, Hartl FU. TRiC/CCT cooperates with different upstream chaperones in the folding of distinct protein classes. EMBO J 2003;22:5230-40. 18. Shin-ichi Yokota, Yuzo Yamamoto, Kenji Shimizu, Hirohito Momoi, Tatsuhiko Kamikawa, Yoshio Yamaoka, Hideki Yanagi, Takashi Yura, and Hiroshi Kubota. Increased expression of cytosolic chaperonin CCT in human hepatocellular and colonic carcinoma. Cell stress society international 2001;6:345-350. 19. Shin-ichi Yokota, Hideki Yanagi, Takashi Yura and Hiroshi Kubota. Cytosolic chaperonin is up-regulated during cell growth preferential expression and binding to tubulin at G1/S transition through early phase. The journal of biological chemistry 1999;274:37070-37078. 20. Oscar Llorca, Jaime Martı′n-Benito, Paulino Go′mez-Puertas, Monica Ritco-Vonsovici, Keith R. Willison, Jose′ L. Carrascosa, and Jose′ M. Valpuesta. Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. Journal of Structural Biology 2001;135:205-218. 21. Gigant, B., Wang, C., Ravelli, R.B., Roussi, F., Steinmetz, M.O., Curmi, P.A., Sobel, A., Knossow, M (2005) Structural basis for the regulation of tubulin by vinblastine. Nature 435: 519-522. 22. Yang J-M, Chen C-C (2004) GEMDOCK: a generic evolutionary method for molecular docking. Proteins: Structure, Function, and Bioinformatics 55: 288–304. 23. Yang J-M, Shen T-W (2005) A pharmacophore-based evolutionary approach for screening selective estrogen receptor modulators. Proteins: Structure, Function, and Bioinformatics 59: 205–220. 24. Jain AJ (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. Journal of Medicinal Chemistry 46: 499–511. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47205 | - |
| dc.description.abstract | 中文摘要
先前我們在Cancer Res. 2009 的報告指出可以使用iodoacetamide-Trp 化合物 共價結合到β-tubulin Cys534 的位置來破壞β-tubulin/CCT-β來當作新穎抗癌法, 特別是具抗藥性癌。在本論文我合成一系列iodoacetamide 化合物來測試它們引 起細胞凋亡之結構-功能關係。這些化合物藉一個修改後的方法來合成:首先將 具氨基化合物和chloroacetyl chloride 作用成chloroacetamide,再將中間物和碘化 鈉作用成最終產物iodoacetamide。這些iodoacetamide 化合物被評估其造成細胞 凋亡之能力,然後經由化合物和β-tubulin 結合的分子模型來解釋其結構-功能關 係。結果顯示這些化合物被預測有相似的結合模式及強度,而它們對HEK29 細 胞也有相似的毒殺效果。 | zh_TW |
| dc.description.abstract | ABSTRACT
Previous report has demonstrated the feasibility of targeting β-tubulin around Cys354 by iodoacetamide-Trp to disrupt β-tubulin/CCT-β complex as a new anti-cancer therapy, especially against drug-resistant cancers (Lin et al., Cancer Res. 2009). In the thesis, I have synthesized a series of iodoacetamides to investigate their structure-activity relationship of the cell apoptotic effect. The compounds were synthesized via the modified pathway from the reaction of starting materials containing free amino group with chloro-acetate to form a series of chloroacetamide compounds, followed by reaction with sodium iodine to form the final adducts. The compounds were evaluated for their cell apoptotic effect. Their binding ability with β-tubulin was predicted by computer modeling to rationalize their SAR against cells. The computer modeling revealed similar binding modes and affinity of these compounds with β-tubulin, and they also caused similar apoptotic effect against the HEK-293 cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:50:47Z (GMT). No. of bitstreams: 1 ntu-99-R97b46031-1.pdf: 4409999 bytes, checksum: 1a4b187f318b27afd59f0be684a4ca45 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
中文摘要……………………………………………………………………………4 ABSTRACT…….……………………………………………………………………5 ABBREVIATION…………………………………………………………………….6 INTRODUCTION……………………………………………………………………7 MATERIAL AND METHODS……………………………………………………9 RESULTS……………………………………………………………………………12 DISCUSSION………………………………………………………………………15 REFERENCE………………………………………………………………………18 SCHEME…………………………………………………………………………….23 FIGURE…………………………………………………………………………….25 SUPPLEMENTARY………………………………………………………………35 | |
| dc.language.iso | en | |
| dc.subject | 碘代乙醯胺 | zh_TW |
| dc.subject | iodoacetamide | en |
| dc.title | 合成iodoacetamide化合物庫以篩選癌症治療新藥物 | zh_TW |
| dc.title | Synthesis of Iodoacetamide Compound Library for Developing Novel Anti-cancer Drugs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳昭岑,吳世雄 | |
| dc.subject.keyword | 碘代乙醯胺, | zh_TW |
| dc.subject.keyword | iodoacetamide, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
