Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47198
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡宜芳(Yi-Fang Tsay)
dc.contributor.authorLing-Hsin Chengen
dc.contributor.author鄭令欣zh_TW
dc.date.accessioned2021-06-15T05:50:33Z-
dc.date.available2010-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citationAlboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN. 2005. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell and Environment 28(4):500-512.
Almagro A, Lin SH, Tsay YF. 2008. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell 20(12):3289-3299.
Bethke PC, Libourel IGL, Aoyama N, Chung YY, Still DW, Jones RL. 2007. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiology 143(3):1173-1188.
Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A. 2001. Major alterations of the regulation of root NO3- uptake are associated with the mutation of NRT2.1 and NRT2.2 genes in Arabidopsis. Plant Physiology 127(1):262-271.
Cheng CL, Dewdney J, Nam HG, Denboer BGW, Goodman HM. 1988. A new locus (NIA-1) in Arabidopsis-thaliana encoding nitrate reductase. EMBO Journal 7(11):3309-3314.
Chiu CC, Lin CS, Hsia AP, Su RC, Lin HL, Tsay YF. 2004. Mutation of a nitrate transporter, AtNRT1 : 4, results in a reduced petiole nitrate content and altered leaf development. Plant and Cell Physiology 45(9):1139-1148.
Chopin F, Orsel M, Dorbe MF, Chardon F, Truong HN, Miller AJ, Krapp A, Daniel-Vedele F. 2007. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell 19(5):1590-1602.
Corbesier L, Havelange A, Lejeune P, Bernier G, Perilleux C. 2001. N content of phloem and xylem exudates during the transition to flowering in Sinapis alba and Arabidopsis thaliana. Plant Cell and Environment 24(3):367-375.
Crawford N, Campbell W, Davis R. 1986. Nitrate reductase from squash: cDNA cloning and nitrate regulation. Proc Natl Acad Sci U S A 83(21):8073-6.
Crawford N, Smith M, Bellissimo D, Davis R. 1988. Sequence and nitrate regulation of the Arabidopsis thaliana mRNA encoding nitrate reductase, a metalloflavoprotein with three functional domains. Proc Natl Acad Sci U S A 85(14):5006-10.
Diaz C, Lemaitre T, Christ A, Azzopardi M, Kato Y, Sato F, Morot-Gaudry JF, Le Dily F, Masclaux-Daubresse C. 2008. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition. Plant Physiology 147(3):1437-1449.
Fan SC, Lin CS, Hsu PK, Lin SH, Tsay YF. 2009. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell 21(9):2750-2761.
Finch-Savage WE, Cadman CSC, Toorop PE, Lynn JR, Hilhorst HWM. 2007. Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant Journal 51(1):60-78.
Galvan A, Quesada A, Fernandez E. 1996. Nitrate and nitrite are transported by different specific transport systems and by a bispecific transporter in Chlamydomonas reinhardtii. Journal of Biological Chemistry 271(4):2088-2092.
Gowda RN. 1924. Nitrification and the nitrifying organisms. I. Journal of Bacteriology 9(3):251-272.
Guo FQ, Wang RC, Chen MS, Crawford NM. 2001. The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1. (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell 13(8):1761-1777.
Hafke JB, van Amerongen JK, Kelling F, Furch ACU, Gaupels F, van Bel AJE. 2005. Thermodynamic battle for photosynthate acquisition between sieve tubes and adjoining parenchyma in transport phloem. Plant Physiology 138(3):1527-1537.
Hilhorst HWM, Karssen CM. 1988. Dual effect of light on the gibberllin-stimulated and nitrate stimulated seed-germination of Sisymbrium-officinale and Arabidopsis-thaliana. Plant Physiology 86(2):591-597.
Ho C-H, Tsay Y-F. 2006. AtNRT1.1-related repression of the high affinity nitrate transporter AtNRT2.1 depend on the nitrate concentrations. Plant Biology (Rockville) 2006:154.
Ho CH, Lin SH, Hu HC, Tsay YF. 2009. CHL1 Functions as a nitrate sensor in plants. Cell 138(6):1184-1194.
Huang NC, Liu KH, Lo HJ, Tsay YF. 1999. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11(8):1381-1392.
Kim SY, Park BS, Kwon SJ, Kim J, Lim MH, Park YD, Kim DY, Suh SC, Jin YM, Ahn JH et al. . 2007. Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp pekinensis). Plant Cell Reports 26(3):327-336.
Li SB, Qian Q, Fu ZM, Zeng DL, Meng XB, Kyozuka J, Maekawa M, Zhu XD, Zhang J, Li JY et al. . 2009. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant Journal 58(4):592-605.
Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB et al. . 2008. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20(9):2514-2528.
Liu, K.H., and Tsay, Y.F. (2003). Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J. 22, 1005–1013.
Liu KH, Huang CY, Tsay YF. 1999. CHL1 is a dual-affinity nitrate transporter of arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11(5):865-874.
Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, Renou JP, Kamiya Y, Nambara E, Truong HN. 2009. The Arabidopsis Abscisic Acid Catabolic Gene CYP707A2 Plays a Key Role in Nitrate Control of Seed Dormancy. Plant Physiology 149(2):949-960.
Penfield S, King J. 2009. Towards a systems biology approach to understanding seed dormancy and germination. Proceedings of the Royal Society B-Biological Sciences 276(1673):3561-3569.
Raper CJ, Thomas J, Tolley-Henry L, Rideout J. 1988. Assessment of an apparent relationship between availability of soluble carbohydrates and reduced nitrogen during floral initiation in tobacco. Bot Gaz 149(3):289-94.
Redinbaugh MG, Campbell WH. 1991. Higher-plant responses to environmental nitrate. Physiologia Plantarum 82(4):640-650.
Rideout JW, Raper CD, Miner GS. 1992. Changes in ratio of soluble sugars and free amino nitrogen in the apical meristem during floral transition of tobacco. International Journal of Plant Sciences 153(1):78-88.
Rossato L, Laine P, Ourry A. 2001. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns. Journal of Experimental Botany 52(361):1655-1663.
Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M. 2004. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology 136(1):2483-2499.
Schiltz S, Munier-Jolain N, Jeudy C, Burstin J, Salon C. 2005. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by N-15 in vivo labeling throughout seed filling. Plant Physiology 137(4):1463-1473.
Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A. 2002. Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany 53(370):959-970.
Tranbarger TJ, Al-Ghazi Y, Muller B, De la Serve BT, Doumas P, Touraine B. 2003. Transcription factor genes with expression correlated to nitrate-related root plasticity of Arabidopsis thaliana. Plant Cell and Environment 26(3):459-469.
Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK. 2007. Nitrate transporters and peptide transporters. Febs Letters 581(12):2290-2300.
Tsay YF, Schroeder JI, Feldmann KA, Crawford NM. 1993. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72(5):705-713.
Tschoep H, Gibon Y, Carillo P, Armengaud P, Szecowka M, Nunes-Nesi A, Fernie AR, Koehl K, Stitt M. 2009. Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant Cell and Environment 32(3):300-318.
Walch-Liu P, Neumann G, Bangerth F, Engels C. 2000. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. Journal of Experimental Botany 51(343):227-237.
Wang R, Liu D, Crawford N. 1998. The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc Natl Acad Sci U S A 95(25):15134-9.
Wang RC, Xing XJ, Crawford N. 2007. Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots. Plant Physiology 145(4):1735-1745.
Zhang HM, Forde BG. 1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279(5349):407-409.
Zhang WH, Zhou YC, Dibley KE, Tyerman SD, Furbank RT, Patrick JW. 2007. Nutrient loading of developing seeds. Functional Plant Biology 34(4):314-331.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47198-
dc.description.abstract硝酸鹽是植物體內主要儲存氮元素的分子,同時也有調節植物發育的功能。先前的研究中發現CHL1(AtNRT1.1)蛋白具有轉運蛋白及硝酸根感應受器的雙重功能,並發現了一個轉運蛋白-感應功能分離的CHL1基因變種株chl1-9。chl1-9是一個Pro492Leu的點突變株,Pro492是一個在阿拉伯芥NRT1基因族中保存度極高的氨基酸,而這個胺基酸與硝酸根運輸有關卻又不會影響硝酸根感應受器的功能。NRT1.13以及NRT1.14是NRT1家族中少數在第492氨基酸相對位置並非Pro的基因,其中NRT1.13在這個位置是Ser,而NRT1.14則是Ala。在水稻的NRT(PTR)基因族中發現有一基因SP1(Short panicle 1),其第492胺基酸相對位置是Leu。利用角蟾卵吸收的實驗發現SP1並不具硝酸轉運蛋白的功能,而當SP1發生突變時植株會呈現短穗表現型。NRT1.13基因在分類上與SP1(Os11g12740)屬於同一亞族群,因此探究NRT1.13基因是否屬於硝酸根感應受器對於瞭解Pro492的角色有重要的意義。
透過GUS組織化學分析以及定量PCR分析我們發現NRT1.13主要分佈在葉柄、果莢著生處及莖遠端部位的實質細胞內,就細胞層次而言NRT1.13則是表現在細胞膜上。而我們也利用喪失NRT1.13功能之突變株nrt1.13與野生種作表現型比較分析以了解NRT.13在植物活體的功能。我發現野生型植株開花時間平均為20.8日,而突變株nrt1.13平均為22.9日;野生型植株平均於長出12.4片葉片時開花,而突變株則在平均有14.9片葉片時開花,顯示nrt1.13有晚開花的現象。果莢生長點間的平均距離也有差異,野生型為0.92公分,而nrt1.13較短為0.64公分,顯示NRT1.13如同水稻的SP1基因一般具有調節花序生長的功能。除此之外,在觀測nrt1.13突變株的含氮量以及放射性氮-15的分佈測試,我們發現氮-15在遠端節點、莖生葉以及花的部分的含量有顯著下降。另外,nrt1.13突變株的種子休眠程度較野生型高,但此休眠現象可經由外加的硝酸根去除,推論nrt1.13種子含硝酸鹽的量較野生型為低。綜合上述發現,我們認為NRT.13對於植物發育的調節以及酸根離子在生殖組之內的分佈有重要的影響。
zh_TW
dc.description.abstractNitrate is not only the primary nitrogen source but also a signaling molecule regulating plant development. A study of the uptake- and sensing-decoupled mutant chl1-9 demonstrates that CHL1 (AtNRT1.1) is not only a transporter but also a sensor. Pro492, which is mutated in the chl1-9 mutant, is required for nitrate transport, but not for nitrate sensing. Pro492 was highly conserved among NRT1 (PTR) family of Arabidopsis thaliana, except two members, NRT1.13 and NRT1.14. Pro was substituted by Ser in NRT1.13 and Ala in NRT1.14, respectively. It will be interesting to find out if these two NRT1 transporters are involved in nitrate sensing. Consistently, a rice NRT1 (PTR) transporter SP1 (Short Panicle 1) with the corresponding Pro492 residue substituted by Leu exhibit no nitrate transport activity when expressed in Xenopus oocyte and display a short panicle phenotype when mutated. Indeed, NRT1.13 (At1g33440) is classified into the same subgroup with SP1 (Os11g12740). This suggested NRT1.13 might also participate in regulating plant development.
Histochemical analysis of PNRT1.13-GUS and quantitative PCR analysis showed that NRT1.13 was mainly expressed in parenchyma cell of petiole, spray and distal part of stem. Furthermore, subcellular localization analysis showed that NRT1.13-GFP fusion protein was in plasma membrane. In order to characterize the in vivo function of NRT1.13, several phenotypes between wild type and nrt1.13 mutant was compared. Compared to the flowering time of 20.8 days in wild type, flowering time in nrt1.13 delayed to 22.9 days. And, the number of leaves when bolted increased from 12.4 in wild type to 14.9 in the mutant. The average distance between sliques of nrt1.13 was also decreased from 0.92 of wild type to 0.64 cm, suggesting that similar to rice SP1, NRT1.13 also participate in regulating elongation of inflorescent stem. In addition, the nitrate content and short-term-15N partition of nrt1.13 were monitored to examine if there were any defects of nrt1.13 in nitrogen distribution. It showed a reduced level of the 15N in distal nodes and flowers of nrt1.13. The nitrate content of nrt1.13 cauline leaf was also reduced. Moreover, germination test showed that fresh seeds of nrt1.13 were more dormant than wild type in a nitrate dependent manner, suggesting that seed nitrate content is reduced in nrt1.13. Taken together, these data indicated that NRT1.13 was important for both developmental regulation and nitrate distribution of reproductive tissue.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:50:33Z (GMT). No. of bitstreams: 1
ntu-99-R97B43030-1.pdf: 2712309 bytes, checksum: d6eb053e7d321a90060ee1002011198a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書………………………………………… i
誌謝………………………………………………………… ii
中文摘要…………………………………………………… iii
英文摘要…………………………………………………… v
Chapter 1: Introduction……………………………… 1
1.1 Nitrogen metabolism in plants…………………… 1
1.2 Nitrate serves as nutrient and signal as well 2
1.3 Nitrate transporters………………………………… 2
1.4 CHL1 is not only a dual affinity nitrate transporter but a nitrate sensor………………… 4
1.5 Seed Dormancy………………………………………… 5
1.6 Aim of research……………………………………… 6
Chapter 2: Material and method……………………… 8
2.1 Plant material…………………………………… 8
2.2 Primers…………………………………………… 8
2.3 Plant growth condition………………………… 9
2.4 Plant genomic DNA (gDNA) and RNA extraction… 10
2.5 Isolation of T-DNA insertion mutant…………… 11
2.6 Analysis of gene expression……………………… 11
2.7 Plasmid construction……………………………… 12
2.8 Primary nitrate response………………………… 14
2.9 Nitrate content measurements…………………… 15
2.10 Short-term 15NO3 partition……………………… 16
2.11 Subcellular localization of NRT1.13………… 16
2.12 PNRT1.13-GUS line construction………………… 17
2.13 GUS staining………………………………………… 19
2.14 Seed dormancy assay……………………………… 19
2.15 Accession numbers………………………………… 20
Chapter 3: Result……………………………………… 21
3.1 Amino Acid Sequence Analysis of NRT1.13……… 21
3.2 The expression pattern of NRT1.13 gene and subcellular localization of NRT1.13 protein… 21
3.3 The expression level of NRT1.13 in petiole of rosette leaves was higher at vegetative stage than that at reproductive stage………………… 22
3.4 NRT1.13 was mainly expressed in petiole of rosette leaf 3rd and 4th………………………… 23
3.5 NRT1.13 was mainly expressed in parenchyma cell of vascular tissue in petiole, distal inflorescence stem and spray…………………… 23
3.6 NRT1.13 is located in the plasma membrane…… 24
3.7 Several phenotypes were compared between wild-type and nrt1.13 mutant to characterize the in vivo function of NRT1.13………………… 25
3.8 nrt1.13 was a homozygous null mutant………… 25
3.9 Flowering time of nrt1.13 was delayed and the distance between first 5 siliques of nrt1.13 was reduced…………………………………………… 26
3.10 nrt1.13 showed no defect in primary nitrate response……………………………………………… 27
3.11 Nitrate content of nrt1.13 rosette leaves at different growth stage showed no difference from wild-type……………………………………… 28
3.12 Cauline leaf nitrate content of nrt1.13 was reduced……………………………………………… 29
3.13 Short-term 15NO3 partition of nrt1.13 showed a reduced level in distal nodes and flowers…29
3.14 Seeds from nrt1.13 mutant could not germinate under nitrogen deprived condition…………… 30
Chapter 4: Discussion………………………………… 32
4.1 NRT1.13 plays an important role in nitrate distribution of reproductive Tissue…………… 32
4.2 NRT1.13 was involved in regulation of the floral transition…………………………………… 33
4.3 10-days old nrt1.13 seedling showed no defect on primary nitrate response……………………… 34
4.4 Nitrate dependent seed dormancy phenotype of nt1.13 suggested that seed nitrate content was reduced in nrt1.13………………………………… 36
4.5 NRT1.13 was important for both developmental regulation and nitrate distribution of reproductive tissue………………………………… 37
參考文獻…………………………………………………… 39
附錄………………………………………………………… 47
dc.language.isoen
dc.subjectNRT1.13zh_TW
dc.subject阿拉伯芥zh_TW
dc.subjectNRT1.13en
dc.subjectArabidopsisen
dc.title阿拉伯芥AtNRT1.13功能分析zh_TW
dc.titleFunctional study of Arabidopsis AtNRT1.13en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李秀敏(Hsou-min Li),董桂書(Kuei-Shu Tung)
dc.subject.keyword阿拉伯芥,NRT1.13,zh_TW
dc.subject.keywordArabidopsis,NRT1.13,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2010-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved