Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47190
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張所鋐
dc.contributor.authorHsien-Jen Chenen
dc.contributor.author陳献壬zh_TW
dc.date.accessioned2021-06-15T05:50:18Z-
dc.date.available2010-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citation[1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58, 1991
[2] S. Iijima, and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, Vol. 363, pp. 603-605, 1993
[3] D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, Vol. 363, pp. 605-607, 1993
[4] J. C. Meyer, M. Paillet, and S. Roth, “Single-molecule torsional pendulum,” Science, Vol. 309, Issue 5740, pp. 1539-1541, 2005
[5] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “ Electronic structure of chiral graphene tubules,” Appl. Phys. Lett., 60, 2204,1992
[6] N. Hamada, S. I. Sawada, A. Oshiyama, “New one-dimensional conductors:Graphitic microtubules,” Phys. Rev. Lett., 68, 1579, 1992
[7] A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes,” Science, Vol. 273, Issue 5274, pp. 483-487, 1996
[8] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synthetic Metals, Vol. 103, Issue 1-3, pp. 2555-2558, 1999
[9] T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, “Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition,” Chemical Physics Letters, Vol. 381, Issue 3-4, pp. 422-426, 2003
[10] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon, Vol. 33, No. 7, pp. 883-891, 1995
[11] T. C. Wu, and S. H. Chang, “Temperature enhanced growth of ultralong multi-walled carbon nanotubes forest,” Current Applied Physics, Vol. 9, Issue 5, pp. 1117-1121, 2009
[12] A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, and A. Zettl, “Rotational actuators based on carbon nanotubes,” Nature, Vol. 424, Issue 6947, pp. 408-410, 2003
[13] V. P. Veedu, A. Y. Cao, X. S. Li, K. G. Ma, C. Soldano, S. Kar, P. M. Ajayan, and M. N. Ghasemi-Nejhad, “Multifunctional composites using reinforced laminae with carbon-nanotube forests,” Nature Materials, Vol. 5, Issue 6, pp. 457-462, 2006
[14] A. A. Zbib, S. D. Mesarovic, E. T. Lilleodden, D. McClain, J. Jiao, and D. F. Bahr, “The coordinated buckling of carbon nanotube turfs under uniform compression,” Nanotechnology, Vol. 19, Issue 17, 175704, 2008
[15] L. X. Zheng, M. J. O’Connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, and Y. T. Zhu, “Ultralong single-wall carbon nanotube,” Nature Materials, Vol. 3, Issue 10, pp. 673-676, 2004
[16] M. Endo, A. Oberlin, and T. Koyama, “High-resolution electron-microscopy of graphitizable carbon-fiber prepared by benzene decomposition,” Japanese Journal of Applied Physics, Vol. 16, Issue 9, pp. 1519-1523, 1977
[17] R. L. V. Wal, and Lee J. Hall, “Carbon nanotube synthesis upon stainless steel meshes,” Carbon, Vol. 41, pp. 659-672, 2003
[18] C. L. Lin, C. F. Chen, and S.C. Shi, “Field emission properties of aligned carbon nanotubes grown on stainless steel using CH4/CO2 reactant gas,“ Diamond and Related Materials, Vol. 13, pp. 1026-1031, 2004
[19] D. Q. Duy, H. S. Kim, D. M. Yoon, K. J. Lee, J. W. Ha, Y. G. Hwang, C. H. Lee, and B. T. Cong, “Growth of carbon nanotubes on stainless steel substrates by DC-PECVD,” Applied Surface Science, Vol. 256, pp. 1065-1068, 2009
[20] V. M. Hansen, N. Latorre, C. Royo, E. Romeo, E. G. Bordeje, and A. MonZon, “Development of aligned carbon nanotubes layers over stainless steel mesh monoliths, “Catalysis Today, Vol. 147S, pp. S71–S75, 2009
[21] C. E. Baddour, F. Fadlallah, D. Nasuhoglu, R. Mitra, L. Vandsburger, J. L. Meunier, ”A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an external catalyst,” Carbon, Vol. 47, pp. 313-347, 2008
[22] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, “Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes,” Science, Vol. 306, pp. 1362-1364, 2004
[23] D. N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, and S. Iijima, “Kinetics of water-assisted single-wall carbon nanotube synthesis revealed by a time-evolution analysis,” Phys. Rev. Lett. 95, 056104 , 2005
[24] D. N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu, M. Yumara, and S. Iijima, “84% catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach,” J. Phys. Chem. B 8053, 110, 2006
[25] B. Kim, H. Chung, K. S. Chu, H. G. Yoon, C. J. Lee,and W. Kim, “Synthesis of vertically-aligned carbon nanotubes on stainless steel by water-assisted chemical vapor deposition and characterization of their electrochemical properties,” Synthetic Metals, Vol. 160, pp. 584-587, 2010
[26] Y. Saito, et al., “Iron particles nesting in carbon cages grown by arc discharge,” Chemical Physics Letters, Vol. 212(3-4), p.p.379-383, 1993
[27] C. Rao, and R. Sen, “Large aligned-nanotube bundles from ferrocene pyrolysis,” Chemical Communications, Vol. 1998(15), p.p.1525-1526, 1998
[28] B. Satishkumar, A. Govindaraj, and C. Rao, “Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ,” Chemical Physics Letters, Vol. 307(3-4), 158-162, 1999.
[29] S. Hampel, et al., “Growth and characterization of filled carbon nanotubes with ferromagnetic properties,” Carbon, Vol. 44(11), p.p. 2316-2322, 2006
[30] C. Muller, et al., “Growth aspects of iron-filled carbon nanotubes obtained by catalytic chemical vapor deposition of ferrocene,” The Journal of Physical Chemistry C, Vol. 113(7), p.p. 2736-2740, 2009
[31] C. Muller, et al., “Growth aspects of iron-filled carbon nanotubes obtained by catalytic chemical vapor deposition of ferrocene, “ The Journal of Physical Chemistry C, Vol. 113(7), p.p. 2736-2740, 2009
[32] A. Leonhardt, et al., “Synthesis and properties of filled carbon nanotubes,” Diamond & Related Materials, Vol. 12(3-7), p.p. 790-793, 2003
[33] C.X. Shi, and H.T. Cong, “Tuning the coercivity of Fe-filled carbon-nanotube arrays by changing the shape anisotropy of the encapsulated Fe nanoparticles,” Journal of Applied Physics, Vol 104(3), p.p. 034307, 2008
[34] H. Terrones, et al., “Magnetism in Fe-based and carbon nanostructures: Theory and applications,” Solid State Sciences, Vol. 8(3-4), p.p. 303-320, 2006
[35] N. Sano, M. Naito, and T. Kikuchi, “Enhanced field emission properties of films consisting of Fe-core carbon nanotubes prepared under magnetic field,” Carbon, Vol. 45(1), p.p. 78-82, 2007

[36] Lv, R.T., et al., “Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber,” Applied Physics Letters, Vol. 93(22), 2009
[37] Q. Liu, et al., “Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures,” Carbon, Vol. 46(14), p.p. 1892-1902, 2007
[38] B. Kim, H. Chung, K. S. Chu, H. G. Yoon, C. J. Lee, W. Kim, “Synthesis of vertically-aligned carbon nanotubes on stainless steel by water-assisted chemical vapor deposition and characterization of their electrochemical properties,” Synthetic Metals, Vol. 160, p.p. 584-587, 2010
[39] T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yamura, and S. Iijima, “Synthesis of single and double walled carbon nanotube forests on conducting metal foils,” J. AM. CHEM. SOC. Vol. 128, p.p. 13338-13339, 2006
[40] S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. R. Nielsen, F. A. Pedersen, and J. K. Norskov, “Atomic-scale imaging of carbon nanofibre growth,” Nature, Vol. 427, Issue 6973, pp.426-429, 2004
[41] S. S. Fan, M. G, Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, Vol. 283, Issue 5401, pp. 512-514, 1999
[42] W. L. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, “Large-scale synthesis of aligned carbon nanotubes,” Science, Vol. 274, pp. 1701-1703, 1996
[43] S. S. Fan, W. J. Liang, H. Y. Dang, N. Franklin, T. Tombler, M. Chapline, and H. J. Dai, “Carbon nanotube arrays on silicon substrates and their possible application,” Physica E, Vol. 8, pp. 179-183, 2000
[44] E. Terrado, I. Tacchini, A. M. Benito, W. K. Maser, and M. T. Martinez, “Optimizing catalyst nanoparticle distribution to produce densely-packed carbon nanotube growth,” Carbon, Vol. 47, Issue 8, pp. 1989-2001, 2009
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47190-
dc.description.abstract由於奈米碳管具有優異的機電、熱傳性質,因此受到廣泛地研究,進而開始應用到電極與各式感測器上,而上述應用大多需要可導電的基板。不鏽鋼(SS 304)之所以會成為熱門的基板人選,是因為它本身組成含有大量的鐵,而且經過一些處理之後,這些鐵就能裸露出來,具有催化奈米碳管析出的活性。如果能直接在金屬基板上成長碳管叢,勢必能提升電極與碳管間的附著性以及獲得更好地電子/熱量傳輸。
發展一套簡單有效而且能直接在不鏽鋼基板上成長碳管叢的製程是相當重要的。在金屬基板上成長碳管叢目前已經有許多的方法提出,但是大多數成長效果都有限,而且製程也相當複雜。因此,本研究針對如何直接在不鏽鋼基板上成長高排列性與高良率的碳管叢進行探討。
本製程利用容易架設的水輔助化學氣相沉積法,加上氧化鋁緩衝層,可以成功地在不鏽鋼基板上直接成長高排列性與高良率的碳管叢。此外,因為二茂鐵裂解後可同時做為碳源、鐵催化劑與填鐵材料,所以在成長過程中加入二茂鐵,可以成功地在不鏽鋼基板上直接成長填鐵碳管叢。
zh_TW
dc.description.abstractCarbon nanotubes (CNTs) are widely studied and are starting to be used for electrode and sensor applications. In such cases, a conducting substrate is most often required. Particularly, stainless steel (SS) seems an attractive candidate for CNT growth due to its high iron content and the possibility to tailor active sites for the growth process. A direct growth of the CNT on the bulk metal substrate should enhance the adherence of the tube to the electrodes and favor a better electron/thermal transfer.
A facile and robust method to grow CNT forests directly on SS substrates will be important. Methods to grow CNT forests directly on metal substrates have been explored previously, but these entailed certain limitations or complicated processes. Therefore, it will be critical to develop a facile method for growing vertically-aligned CNT forests of high quality directly on SS substrates. In this research, we demonstrate that CNT forests can be successfully synthesized on SS 304 by a simple water-assisted CVD with Al2O3 buffer layer as pattern. In addition, we demonstrate that iron-filled CNT forests can be successfully synthesized on SS 304 by adding ferrocene, which serves as carbon source, catalyst, and iron-filled material.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:50:18Z (GMT). No. of bitstreams: 1
ntu-99-R97522613-1.pdf: 5724295 bytes, checksum: 2c6be42a488d2a23adf3a1ed971ff1c9 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝…………………………………………………………….……….......i
中文摘要…………………………………………………………………...ii
英文摘要……………………………………………………………...…...iii
目錄…………………………………………………..................................iv
圖目錄………………………………………………………….…………vii
表目錄…………………………………………………………..…………xi
第一章 緒論……………………………………………………………….1
1.1 前言……………………………………………………………….1
1.2 研究動機………………………………………………………….2
第二章 文獻回顧………………………………………………………….2
2.1 奈米碳管介紹…………………………………………………….3
2.1.1 奈米碳管之組成結構與物理特性…………………...........3
2.1.2 奈米碳管之合成方法………………………………..…….7
2.1.3 奈米碳管之成長機制…………………………………….11
2.2 不鏽鋼基板成長碳管叢……………………………………...…16
2.2.1 氧化還原-化學氣相沉積法………………………………16
2.2.2 電漿輔助化學氣相沉積法……………………….………18
2.2.3 酸蝕-化學氣相沉積法…………………………………....22
2.2.4 水輔助化學氣相沉積法………………………..………...24
2.3 填鐵奈米碳管叢…………………………...……………..……..28
第三章 實驗流程與架構……………………………………………..….30
3.1 實驗流程………………………………………………………...30
3.2 試片製程…………...……………………………………………31
3.3 儀器架構與設定………………………………………………...34
3.3.1 不鏽鋼基板成長中空碳管叢…………………………….36
3.3.2 不鏽鋼基板成長填鐵碳管叢…………………………….39
3.4 顯微分析…………………………………………………...........43
第四章 實驗結果與討論……………………………………………...…47
4.1 中空碳管叢成長參數…………………………………………...48
4.1.1 還原溫度對成長之影響………………………….............48
4.1.2 鍍膜對成長之影響……………………………………….52
4.1.3 水蒸氣對成長之影響…………………………………….55
4.2 填鐵碳管叢成長參數…………………………………………...64
4.2.1 氧化鋁緩衝層對成長之影響…………………………….64
4.2.2 水蒸氣對成長之影響………………………………….…69
第五章 結論與未來展望………………………………………………...72
5.1 結論…………………………………………………...................72
5.2 未來展望…………………………………………………...........73
參考文獻………………………………………………….........................74
dc.language.isozh-TW
dc.subject水輔助zh_TW
dc.subject二茂鐵zh_TW
dc.subject氧化鋁緩衝層zh_TW
dc.subject不鏽鋼zh_TW
dc.subject填鐵碳管叢zh_TW
dc.subjectwater-assisteden
dc.subjectstainless steelen
dc.subjectferroceneen
dc.subjectAl2O3 buffer layeren
dc.subjectiron-filled CNT foresten
dc.title氧化鋁與水氣對不鏽鋼基板成長高排列性奈米碳管叢之研究zh_TW
dc.titleEffects of Al2O3 buffer layer and water vapor on growth of highly vertically aligned carbon nanotube forests on stainless steelen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張家歐,施文彬,林致廷
dc.subject.keyword不鏽鋼,水輔助,填鐵碳管叢,氧化鋁緩衝層,二茂鐵,zh_TW
dc.subject.keywordstainless steel,water-assisted,iron-filled CNT forest,Al2O3 buffer layer,ferrocene,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2010-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
5.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved