Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47169
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐源泰(Yuan-Tay Shyu)
dc.contributor.authorMei Ying Suen
dc.contributor.author蘇梅英zh_TW
dc.date.accessioned2021-06-15T05:49:38Z-
dc.date.available2012-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citationAkinori, M., Hiroyuki, I., Seiya, W., Tsutomu, K., Keisuke, M., Shigeki, S., 2009. Efficient Bioethanol Production by a ecombinant Flocculent Saccharomyces cerevisiae Strain with a Genome-Integrated NADP-Dependent Xylitol Dehydrogenase Gene. Applied and environmental microbiology. 3818–3822.
Alexander, N.J., 1986. Acetone stimulation of ethanol production from D-xylose by Pachysolen tannophilus. Appl. Microbiol. Biotechnol. 25, 203–207.
Alkasrawi, M., Galbe, M., Zacchi, G., 2002. Recirculation of process streams in fuel ethanol production from softwood based on simultaneous saccharification and fermentation. Appl. Biochem. Biotechnol. 98–100, 849–861.
Al-Suwaiegh, S., Fanning, K.C., Grant, R.J., Milton, C.T., Klopfenstein, T.J., 2002. Utilization of distillers grains from the fermentation of sorghum or corn in diets for finishing beef and lactating dairy cattle. J. Anim. Sci. 80, 1105–1111.
Anna, E., Christensson, C., Wahlbom, F., Hahn-H¨agerdal, B., 2000. Anaerobic Xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66, 3381–3386.
Aristidou, A., Penttila, M., 2000. metabolic engineering applications to renewable resource utilixation. Curr opin Biotechnol. 11: 187–197.
Azuma, J., Tanaka, F., Koshijima, T., 1984. Enhancement of enzymatic susceptibility of lignocellulosic wastes by microwave irradiation. J. Ferment. Technol. 62, 377–384.
Ballesteros, J.M., Oliva, M., Carrasco, J., 1993. Optimization of the Simultaneous Saccharification and Fermentation Process Using Thermotolerant Yeasts. Applied Biochemistry and Biotechnology. 39/40, 201–211.
Ballesteros, J.M., Oliva, J.M., Negro, M.J., Manzanares, P., Ballesteros, I., 2003. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem. 39, 1843–1848.
Baugh, K.D., Levy, J.A., McCarty, P.L. 1988. Thermochemical pretreatment of lignocellnlose to enhance methane fermentation: II. Evaluation and application of pretreatment model. Biotechnol. Bioeng. 31, 62–70.
Bayer, E.A., Belaich, J.P., Shoham, Y., Lamed, R., 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58, 521–554.
Bayer, E.A., Chanzy, H., Lamed, R., Shoham, Y., 1998. Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol. 8, 548–557.
Berndes, G., Hoogwijk, M., van den Broek, R., 2003. The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenergy. 25.1-28.
Bjerre, A.B., Olesen, A.B., Fernqvist, T., 1996. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol. Bioeng. 49, 568–577.
Boopathy, R., 1998. Biological treatment of swine waste using anaerobic baffled reactors. Bioresour. Technol. 64, 1–6.
Börjesson, P., Berndes, G., 2006. The prospects for willow plantations for wastewater treatment in Sweden. Biomass and Bioenergy. 30, 428-438.
Bothast, R.J., Nichols, N.N., Dien, B.S., 1999. Fermentations with new recombinant organisms. Biotechnol Prog. 15, 867–875.
Bruinenberg, P.M., de Bot, P.H.M., van Dijken, J.P., Scheffers, W.A., 1983. The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur. J. Appl. Microb. Biotechnol. 18, 287–292.
Chum, L.H., Overend, R.P., 2001. Biomass and renewable fuels. Fuel Bioprocess. Technol. 17, 187–195.
Cadoche, L., Lopez, G.D., 1989. Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol. Wastes. 30, 153–157.
Cameron, M.G., Cremin Jr., J.D., Fahey Jr., G.C., Clark, J.H., Berger, L.L., Merchen, N.R., 1991. Chemically treated oat hulls in diets for dairy heifers and wethers: effects on intake and digestion. J. Dairy Sci. 74, 190–210.
Cheung, S.W., Anderson, B.C., 1997. Laboratory investigation of ethanol production from municipal primary wastewater. Bioresour. Technol. 59, 81–96.
Chosdu, R., Hilmy, N., Erizal, Erlinda, T.B., Abbas, B., 1993. Radiation and chemical pretreatment of cellulosic waste. Radiat. Phys. Chem. 42, 695–698.
Cotula, L., Dyer, N., Vermeulen, S., 2008. Fuelling exclusion? The biofuels boom and poor people’s access to land, IIED, London.
Coughlan, M.P., Ljungdahl, L.G., 1988. Comparative biochemistry of fungal and bacterial cellulolytic enzyme system. In: Aubert, J.-P., Beguin, P., Millet, J. (Eds.), Biochemistry and Genetics of Cellulose Degradation, pp. 11–30.
Deepak. R., Keshwani, D.R., Cheng, J.J., Burns, J.C., Li, L., Chiang, V., 2007. Microwave Pretreatment of Switchgrass to Enhance Enzymatic Hydrolysis. An ASABE Meeting Presentation Paper Number: 077127
Dewes, T., Hunsche, E., 1998. Composition and Microbial degradability in the soil of farmyard manure from ecologically-managed farms. Biol. Agric. Hortic. 16, 251–268.
Dias De Oliveira, M.E., Vaughan, B.E., Rykiel JR, E.J., 2005. Ethanol as Fuel: Energy, Carbon Dioxide Balances, and Ecological Footprint. BioScience. 55, 593-602.
Dien, B.S., Cotta, M., Jeffries, T., 2003. 'Bacteria engineered for fuel ethanol production: current status'. Appl Microbiol Biotechnol. 63, 258–266.
Dien, B.S., Iten, L.B., Bothast, R.J., 1999. Conversion of corn fiber to ethanol by recombinant E-Coli strain FBR3. J Ind Microbiol Biotechnol. 22, 575–581.
Duff, S.J.B., Murray, W.D., 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour. Technol. 55, 1–33.
Durand, H., Baron, M., Calmels, T., Tiraby, G., 1988. Classical and molecular genetics applied to Trichoderma reesei for the selection of improved cellulolytic industrial strains. In: Aubert, J.P., Beguin, P., Millet, J. (Eds.), Biochemistry and Genetics of Cellulose Degradation. Academic Press, San Diego, CA, pp. 135–151.
Demirbas, A., 2005. Hydrogen production via pyrolytic degradation of agricultural residues. Energy Sour. 27, 769–775.
Eliasson, A., Christensson, C., Wahlbom, C.F., Hahn-Hägerdal, B., 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66, 3381–3386.
FAO. 2006. Impact of an increased biomass use on agricultural markets, prices and food security: a longer-term perspective, by J. Schmidhuber. Prepared for the International Symposium of Notre Europe, Paris, 27–29 November 2006. (Available at: http://www. fao.org/es/esd/BiomassNotreEurope.pdf)
Feller, R.L., Lee, S.B., Bogaard, J., 1986. The kinetic of cellulose deterioration. Adv. Chem. Ser. 212, 329–347.
Galbe, M., Zacchi, G., 2002. A review of the production of ethanol from softwood. Appl Microbiol Biotechnol. 59, 618–628
Graf, A., Koehler, T., 2000. Oregon Cellulose-Ethanol Study. Oregon Office of Energy. Salem OR USA. p30.
Gusakov, A.V., Salanovich, T.N., Antonov, A.I., Ustinov, B.B., Okunev, O.N., Burlingame, R., et al. 2007. Design of highly efficient cellulose mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng. 97, 1028–1038.
Guthrie, C., Fink, G.R., 1991. Guide to yeast genetics and molecular biology. Methods Enzymol. 194, 552–553.
Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., Gorwa-Grauslund, M.F., 2007. Towards industrial pentose-fermenting yeast strains. Appl. Biochem. Biotech. 74, 937–953.
Ho, N.W.Y., Chen, Z., Brainard, A., 1998. Genetically engineered Saccharomyces yeast capable of effective cofermentaion of glucose and xylose. Appl. Environ. Microbiol. 64, 1852–1859.
IPCC Technical Paper VI, p117-119. (http://www.ipcc.ch/pdf/technical-papers/ccw/ chapter6.pdf)
Jeffries, T.W., Grigoriev, I.V., Grimwood, J., Laplaza, J.M., Aerts, A., Salamov, A., Schmutz, J., Lindquist, E., Dehal, P., Shapiro, H., Jin, Y.S., Passoth, V. Richardson, P.M., 2007. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat. Biotechnol. 25, 319–326.
Jin, Q.H., Dai, S.S., Huang, K.M., 1999. Microwave Chemistry. China Science Press, Beijing, PR China.
João, R.M., Almeida, T., Modig, A.P., Hähn-Hägerdal, B., Gunnar, L., Marie, F., 2007. Gorwa-Grauslund. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 82, 340–349 .
Johansson, B., Christensson, C., Hobley, T., Hahn-Hägerdal, B., 2001. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl. Environ. Microbiol. 67, 4249–4255.
K¨otter, P., Ciriacy, M., 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotech. 38, 776–783.
Kerley, M.S., Garleb, K.A., Fahey Jr., G.C., Berger, L.L., Moore, K.J., Phillips, G.N., Gould, J.M., 1988. Effects of alkaline hydrogen peroxide treatment of cotton and wheat straw on cellulose crystallinity and on composition and site and extent of disappearance of wheat straw cell wall phenolic and monosaccharides by sheep. J. Anim. Sci. 66, 3235–3244.
Kim, I.S., Barrow, K.D., Rogers, P.L., 2000. Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas ZM4 (pZB5). Appl Biochem Biotechnol. 84-86, 357-370
Kwiatkowski, J.R., McAloon, A.J., Taylor, F., Johnston, D.B., 2006. Modeling the process and costs of fuel ethanol production by the corn drygrind process. Ind Crops Products. 23, 288–96.
Kinmen country government public announcement. http://www.kinmen.gov.tw/Layout /main_ en/index.aspx?frame=18
Kitchaiya, P., Intanakul, P., Krairish, M., 2003. Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. J. Wood Chem. Technol. 23, 217–225.
Klinke, H.B., Olsson, L., Thomsen, A.B., Ahring, B.K., 2003. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Biotechnol. Bioeng. 81, 738–747.
Klinke, H.B., Thomsen, A.B., Ahring, B.K., 2004. Inhibition of ethanolproducing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 66, 10–26.
Kuyper, M., Harhangi, H. R., Stave, A. K., Winkler, A. A., Jetten, M. S., De Laat, W. T., Den Ridder, J. J., Op den Camp, H. J., Van Dijken, J. P., Pronk, J. T. 2003. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 4, 69–78.
Kamm, B. et al., 2007. Biorefi nery systems — an overview, in Kamm, B., Gruber, P.R., and Kamm, M. (Eds.), Biorefi neries: Industrial Processes and Products, Volume 1, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, chap. 1.
Larson, E.D., Williams, R.H., Regis, M., Leal, L.V., 2001. A review of biomass integrated-gasifier/gas turbine combined cycle technology and its application in sugarcane industries, with an analysis for Cuba. Energy for Sustainable Development. 1, 54–76.
Larsson, S., Palmqvist, E., Hahn- Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., et al., 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24, 151–159.
Lawford, H.G., Rousseau, J.D., 2002. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose. Appl Biochem Biotechnol. 98, 429–428.
Lin, C.J., Chang, D.M., Hsieh C.Y., Lee, B.J., 2006. A Study of the Relationships among the Composition and Sensory Evaluation of Chinese Spirits and Consumer Behavior. Journal of Humanities and Social Sciences. 2, 25–35.
Lin, K.C., 2002. Nature protection areas in Taiwan. Council of Agriculture, Executive Yuan, Taipei, Taiwan. p11.
Lin, H., Bennett, G.N., San, K.Y., 2005. Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate. Biotechnol Bioeng. 89, 148–56.
Lodge, S.L., Stock, R.A., Klopfenstein, T.J., Shain, D.H., Herold, D.W., 1997. Evaluation of corn and sorghum distillers byproducts. J. Anim. Sci. 75, 37–43.
Lynd, L.R., 1996. Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annual Reviews, Energy Environment. 21, 403–65.
Macheiner, D., Adamitsch, B.F., Karner, F., Hampel, W.A., 2003. Pretreatment and Hydrolysis of Brewer’s spent grains. Eng. Life Sci. 3, 401–405.
Majetich, G., Hicks, R., 1995. The use of microwave heating to promote organic reactions. J. Microwave Power Electromag. Energ. 30, 27–45.
McDonald, P., Edwards, R.A., Greenhalgh, J.F.D., Morgan, C.A., 1995. In 5th (Ed.), Animal nutrition. Longman Scientific and Technical, England.
McMillan, J.D., 1994. Pretreatment of lignocellulosic biomass. In: Himmel, M.E., Baker, J.O., Overend, R.P. (Eds.), Enzymatic Conversion of Biomass for Fuels Production. American Chemical Society, Washington, DC, pp. 292–324.
Millati, R., Edebo, L., Taherzadeh, M.J., 2005. Performance of Rhizopus Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates. Enzyme Microb Technol . 36, 294–300.
Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 420–428.
Mohagheghi, A., Dowe, N., Schell, D., Chou, Y.C., Eddy, C., Zhang, M., 2004. Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnol Lett. 26, 321–325
Mojovic, L., Nikolic, S., Rakin, M., Vukasinovic, M., 2006. Production of bioethanol from corn meal hydrolyzates. Fuel. 85, 1750–1755.
Ohgren, K., Bengtsson, O., Gorwa-Grauslund, M.F., Galbe, M., Hahn-Hägerdal, B., Zacchi, G., 2006. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J. Biotechnol. 126, 488–498.
Ohgren, K., Zacchi, G. Galbe, M., 2005. Optimisation of steam pretreatment of SO2-impregnated corn stover for fuel ethanol production. Appl. Biochem. Biotech. 124, 1055–1067.
Ohta, K, Beall, D.S, Mejia, J. P., Shanmugam, K, T., Ingram, L.O. 1991. Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol-production from xylose and glucose. Appl Environ Microbiol. 57, 2810–2815.
Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T., Ingram, L.O., 1991. Genetic improvement of Escherichia coli for ethanol production:chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol. 57, 893–900.
Olsson, L., Hahn- Häerdal, B., 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 18, 312–331.
Olsson, L., Hahn-Hägerdal, B., 1993. Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates. Process Biochem. 28, 249–257.
Olsson, L., Soerensen, H.R., Dam, B.P., Christensen, H., Krogh, K.M., Meyer, A.S., 2006. Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Appl Biochem. Biotechnol. 129–132,117–129
Özlem ÖZPINAR, Melek ÖZKAN, 2007. Cellulose degradation and glucose accumulation by Clostridium thermocellum ATCC 27405 under different cultural conditions Annals of Microbiology. 57, 395–400.
Palmqvist, E., Grage, H., Meinander, N.Q., Hahn-Hägerdal, B., 1999. Main and interaction effects of acetic acid, furfural, and p- hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng. 63, 46–55
Palmqvist, E., Hähn-Hägerdal, B., 2000. Fermentation of lignocellulosic hydrolysates. II: inhibitors andmechanisms of inhibition. Bioresource Technol. 74, 25–33.
Paster, M., 2003. Industrial bioproduct: Today and tomorrow. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program. Washington, D.C. (http://www.bioproducts-bioenergy.gov/pdfs/ bioproductsopportunitiesreprotfinal.pdf.)
Popp, J., Somogyi, A., 2007. Bioethanol and biodiesel in the EU: bless or curse? Bioenergy, 2007/1. and 2.
Reshamwala, S., Shawky, B.T., Dale, B.E., 1995. Ethanol production from enzymatic hydrolysates of AFEX-treated coastal Bermuda grass and switchgrass. Appl. Biochem. Biotechnol. 51/52, 43–55.
Roberto, I.C., Felipe, M.G.A., Lacis, L.S., Silvio, S., Mancilha, I.M., 1991. Utilization of sugar cane bagasse hemicellulosic hydrolyzate by Candida gillermondii for xylitol production. Bioresour. Technol. 36, 271–275.
Rodriguez-Pena, J.M., Cid, V.J., Arroyo, J. , Nombela, C., 1998. The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 162, 155–160.
Ryu, D.D.Y., Mandels, M., 1980. Cellulases–biosynthesis and applications. Enzyme Microb. Technol. 2, 91–102.
Saha, B., 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279–291.
Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V., 2005. Process Biochem. 40, 3693–3700.
Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular Cloning: A laboratory manual, 2nd. Cold Spring Harbor Laboratory Press, New York.
Schulein, M., 1988. Cellulases of Trichoderma reesei. In:Wood WA, Abelson JN, editors. Methods in enzymology, vol. 160. New York: Academic Press. 234–42.
Schwarz, W.H., 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol. 56, 634–649.
Senthilkumar, V., Gunasekaran, P., 2005. Bioethanol production from cellulosic substrate: Engineered bacteria and process integration challenges. Journal of Scientific & Industrial Research. 64, 845–853.
Shih, S., 2009. Sorghum liquor helps build Kinmen's fortunes. Taiwan Journal, 26.
Silva, J.C., Cole, N.A., Brown, M.S., Ponce, C.H., Smith, D.R., 2007. Effects of dietary fat and wet sorghum distiller's grains plus solubles on feedlot performance and carcass characteristics of finishing heifers. 2007 Beef Cattle Research in Texas. The Texas A&M University System. The Agriculture Program. 83–88.
Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C., 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.
Streimikiene, D., Klevas, V., Bubeliene, J. , 2007. Use of EU structural funds for sustainable energy development in new EU member states, Renew Sustain Energy Rev. 116, 1167–1187.
Su, M.Y., Tzeng, W.S., Shyu, Y.T., 2010. Analyzing the feasibility of bioethanol production from Taiwan sorghum liquor. Bioresour. Technol. 101. 6669–6675.
Sues, A., Millati, R., Edebo, L., Taherzadeh, M.J., 2005. Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus. FEMS Yeast Res. 5, 669–676
Sun, Y., Cheng, J., 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11.
Sung, W.C., Huang, C.H., Wang, B.S., 2004. Investigation on the change of mochi with the addition of sorghum. Chia Nan Annual Bulletin 30, 42–52.
Thomson, A., 2006. An investigation into the implications of using very wet biomass as a fuel. Master thesis, Mechanical Engineering Department, University of Strathclyde, Glasgow.
Toivari, M., Aristidou, A., Ruohonen, L., Penttil¨a, M., 2001. Conversion of xylose to ethanol by recombinant Saccharomyses cerevisiae: importance of xylulokinas (XKS1) and oxygen availability. Metabol. Eng. 3, 236–249.
US DOE. 2008. Advanced bioethanol technology (website:http://www.ott.doe. gov/biofuels/) US Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Transportation Technologies. Washington DC USA.
Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Symposium: Carbohydrate methodology, metabolism, and nutritional implications in diary cattle. J. Dairy Sci. 74, 3583–3597.
Van Zyl, W., al., 2007. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Biofuels. 205–235.
Verduyn, C., Postma, E., Scheffers, W.A., Van Dijken, J.P., 1992. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous culture study on the regulation of respiration and alcoholic fermentation. Yeast. 8, 501–517.
Wahlbom, C.F., Hahn-H¨agerdal, B., 2002. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 78, 172–178.
Wan, J., Tse, M., Husby, H., Depew, M., 1990. High-power pulsed microwave catalytic processes: decomposition of methane. J. Microwave Power Electromag. Energ. 25, 32–38.
Wang, B., Ge, X.M., Li, N., Bai, F.W., 2006. Continuous Ethanol Fermentation Coupled with Recycling of Yeast Flocs. Chin. J. Biotechnol. 22, 816–821.
Wang, P.Y., Schneider, H., 1980. Growth of yeasts on D-xylulose. Can. J. Microbiol. 26, 1165–1168.
Wiechelman, K., Braun, R., Fitzpatrick, J., 1988. Investigation of the bicinchoninic acid protein assay: Identification of the groups responsible for color formation. Anal. Biochem. 175, 231–237.
Wiselogel, A., Tyson, S., Johnson, D., 1996. Handbook on bioethanol: Production and utilization. Taylor and Francis. Washington, DC.
Yu, J., Zhang, X., Tan, T., 2007. An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J. of Biotechnol. 129, 415–420
Zaldivar, J., Nielsen, J., Olsson, L., 2001. Fuel ethanol production from lignucellulose. A challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 56, 17–34.
Zhu, S., Wu, Y., Yu, Z., Zhang, X., Li, H., Gao, M., 2006. The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresour. Technol. 97, 1964–1968.
Zou, J., Shi, Y., 2003. Chapter VIII: Industrial use of sorghum. Post-harvest Compendium. Food and Agriculture Organization of the United Nations statistics. Rome, Italy.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47169-
dc.description.abstract利用來自生物體的有機物質所製造的生質燃料,作為替代能源使用,為一種可同時解決石化燃料消耗及降低環境污染的方法。其中,生質酒精以不同比例混合汽油作為運輸工具之替代燃料使用,可降低引擎運轉時二氧化碳與其它溫室效應氣體的排放。木質纖維素為自然界中可供製造生質酒精之最大量生質料源,由於木質纖維素大多為廢棄物質,具有低成本及低環境衝擊之特性,因此是一種極具開發潛力之材料。為使纖維酒精製程具有經濟競爭性,所有的纖維料源都必須儘可能轉化成可發酵醣供利用,近年來,酒精的製造主要以微生物發酵生產,然而,傳統酒精發酵菌株囿限於大部分只能利用六碳醣為碳源,進一步阻礙了工業化的發展。利用基因重組工程技術,開發可同時發酵所有存在於木質纖維素中單醣之菌株,為現行研究的主流,此技術之重點在於,重組菌株可同時轉化半纖維素中普遍存在之五碳醣為酒精。本研究重點在於探討重組酵母菌株發酵纖維廢棄物產製生質酒精之效能,第一部分,評估台灣高梁酒粕生產生質酒精的可行性,本研究設計一系列實驗探討高梁酒粕轉化酒精之效率,包括物理處理、不同酸鹼條件下之微波照射預處理、酵素水解及微生物發酵程序。研究結果顯示,金門高粱酒粕(KS)及嘉義高梁酒粕(CS)組成中,以乾基計算分別含有17.2 ± 0.7% 和18.2 ± 0.6% 纖維素、19.0 ± 0.6% 和 21.6 ± 1.0% 半纖維素、18.5 ± 0.8% 和 20.6 ± 1.7% 酸水解木質素以及22.1 ± 0.7% 和23.3 ± 0.4% 的澱粉存在;經由微波照射預處理與酵素水解程序之KS 和CS 的還原醣產率分別為 331.1和341.3 mg/g 乾重;KS與CS的水解產物後續再經Saccharomyces cerevisiae 發酵作用可產酒精分別達0.13 和 0.14 g/g 乾重。此實驗除證明台灣高梁酒粕為一良好之產製生質酒精料源外,此方法中之條件亦可提供為同時富涵木質纖維素與澱粉之料源產製生質酒精之預處理操作程序參考之用。第二部分,利用傳統酒精發酵酵母菌S. cerevisiae為宿主,構築一可同時利用木質纖維水解液中六碳醣與五碳醣為碳源發酵酒精之重組菌株,表現質體構築來自於Pichia stipitis 之木糖代謝外源性基因XYL1、XYL2及XYL3,並利用強力啟動子ADH1及誘導式啟動子GAL1進行調控,經由此質體轉型之菌株PSC207可於合成基礎培養基中生長並且以高粱酒粕水解液為碳源,進行木糖還原酶(XR)、木糖醇脫氫酶(XDH)及木酮糖激酶(XK)之表現,產生酒精,經由分析顯示,PSC207重組菌株酒精產率較未轉形母株YPH499高,可達理論酒精產率之85.5%;小量批次發酵48小時後之木糖消耗量顯示,PSC207過量表現外源性木糖代謝基因情況下,可消耗較多高粱酒粕水解液中之木醣,達母株YPH499的17.6倍,對照菌株PSC107(所攜帶之內源性XYL3基因為來自於S. cerevisiae CBS8066)的1.4倍,並且,代謝途徑中之副產物木糖醇產量並未與對照組有顯著差異。綜合上述結果,本研究所構築之五碳醣與六碳醣共發酵菌株PSC207能有效利用木質纖維水解液中之可發酵醣碳源轉化成酒精,未來應可擴大範圍應用於連續式發酵製程,建立木質纖維酒精生產技術平台,進一步朝經濟規模發展。zh_TW
dc.description.abstractProduction of biofuel from biomass is one way to reduce both consumption of fossil fuels and environmental pollution. Bioethanol is appropriate for the fuel blends because of its reduction of CO2 and exhaust greenhouse gas emission from the transport sector. Large-scale lignocellulosic biomass types are the most promising feedstock considering its high yields, low costs, and low environmental impacts. Whole feedstock utilization is one of the primaries to make lignocellulosic ethanol processes economically competitive. Recently, biotechnological fermentation process is generally satisfied in worldwide demand of ethanol, and therefore ethanol producing organisms have been developed for commercial processes, but its narrow scope of fermentable carbohydrates has limited its industrial exploitation. The current available technology, which is the engineered microorganisms must ferment all lignocellulosic derived monosaccharides, including hexose and pentose sugars to ethanol. The improved conversion efficiency of ethanol production is based on utilization of a pentose present in hemicellulose, a ubiquitous component of lignocellulosic biomass. This study evaluate the feasibility of using sorghum liquor waste for bioethanol production, we serially investigated the effectiveness of physical treatment, microwave irradiation pretreatment, enzymatic hydrolysis, and fermentation. Composition analysis revealed that Kinmen sorghum liquor waste (KS) and Chiayi sorghum liquor waste (CS) contain approximately 17.2 ± 0.7% and 18.2 ± 0.6% cellulose, 19.0 ± 0.6% and 21.6 ± 1.0% hemicellulose, 18.5 ± 0.8% and 20.6 ± 1.7% acid detergent lignin, and 22.1 ± 0.7% and 23.3 ± 0.4% starch, respectively, on dry weight basis. The reducing sugar yield obtained after microwave irradiation pretreatment and enzymatic hydrolysis of KS and CS were 331.1 and 341.3 mg/g dry weight. The ethanol yields obtained after fermentation of KS and CS hydrolysates with S. cerevisiae were 0.13 and 0.14 g/g dry weight, respectively. This operation of pretreatment may provide a suggestible pattern of utilizing feedstock that contain lignocellulose and starch for ethanolic fermentation. Furthermore, the fermentation performance of the pentose fermenting S. cerevisiae strains in lignocellulose hydrolysate is designed. Through construction of the integrating vectors by employ strong promoter ADH1 and inducible promoter GAL1 to regulate the expression of heterogeneous XYL1, XYL2 and XYL3 genes in recombinant S. cerevisiae. The resulting strains exhibited xylose reductase (XR), xylitol dehydrogenase (XDH), and xylulokinase (XK) activities in a defined mineral medium containing CS hydrolysate and a higher theoretical ethanol yield approximately 80.7 and 85.5% than that obtained by the parental strain YPH499. The recombinant strain PSC207 overexpression of the heterogeneous genes from P. stipitis CBS6045 resulted in the produced less xylitol (0.25 g xylitol/g xylose) but consumption of more xylose than strain PSC107, which carries XYL3 from S. cerevisiae CBS8066. PsXYL3 is a better target for overexpression than ScXYL3 for engineering S. cerevisiae strains capable of fermenting non-detoxified CS hydrolysate.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:49:38Z (GMT). No. of bitstreams: 1
ntu-99-D94628007-1.pdf: 1375516 bytes, checksum: fd3b9fc1026ea6d9e00403c2bb001ac1 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書...........................................................................................................i
謝 辭………………………………………..…………………………………….…ii
中文摘要………………………………………………………………………………..iii
ABSTRACT…………………...………………………………………………………...v
TABLE OF CONTENTS…………………………………………...…………………viii
LIST OF TABLES………………...…………………………………………….…..…xii
LIST OF FIGURES………………...………………………………………………….xiv
Chapter 1 Literature review……………………………………………………………...1
1.1 Background…………………………………………………………………………..1
1.2 Current development of bioethanol………………………………………………….4
1.3 Raw materials………………………………………………………………………..7
1.3.1 Sugar feedstocks……………………………………………………………….9
1.3.2 Starch feedstocks……………………………………………………………..9
1.3.3 Lignocellulosic Feedstocks…………………………………………………...10
1.4 Key conversion technology………………………………………………………...16
1.4.1 Mechanical comminution pretreatment………………………………………16
1.4.2 Pretreatment…………………………………………………………………..18
1.4.3 Cellulose hydrolysis………………………………………………………….18
1.4.4 Remove inhibitors…………………………………………………………….23
1.4.5 Ethanol fermentation and fermenting strains…………………………………23
1.4.6 Process integration……………………………………………………………27
1.5 Sorghum liquor waste……………………………………………………………..29
1.6 Goal of This Study………………………………………………………………...31
Chapter 2 An analysis of feasibility of bioethanol production from Taiwan sorghum liquor waste……………………………………………………………………..………33
Abstract…………………………………………………………………………………33
2.1 Introduction………………………………………………………………………...33
2.2 Materials and methods……………………………………………………………..37
2.2.1 Materials used and analysis of biomass components………………………...37
2.2.2 Microwave irradiation pretreatment………………………………………….38
2.2.3 Enzymatic hydrolysis………………………………………………………...39
2.2.4 Ethanol fermentation…………………………………………………………40
2.2.5 Analytical methods…………………………………………………………...41
2.2.6 Carbon balances………………………………………………………………42
2.3 Result and discussion……………………………………………………………….44
2.3.1 Biomass components…………………………………………………………44
2.3.2 Sugar yield from the hydrolysate………………………………………….….47
2.3.2.1 Reducing sugar………………………………………………………47
2.3.2.2 Monosaccharides…………………………………………………….49
2.3.3 Contents of residual starch, cellulose, hemicellulose, and ADL in the hydrolysate…………………………………………………………………….……53
2.3.4 Acetic acid yield from the hydrolysate……………………………….………57
2.3.5 Ethanol yield after fermentation of the hydrolysate………………………….59
2.3.6 Residual reducing sugar after fermentation of the hydrolysate………………62
2.3.7 Carbon balance……………………………………………………………….64
2.4 Conclusion………………………………………………….....................................66
Chapter 3 Ethanol fermentation from Sorghum liquor waste by recombinant Saccharomyces cerevisiae carrying Hetrologous XR, XDH, and XK………………..67
Abstract…………………………………………………………………………………67
3.1 Introduction………………………………………………………………………...68
3.2 Materials and methods……………………………………………………………...72
3.2.1 Recombinant S. cerevisiae……………………………………………………72
3.2.2 DNA preparation……………………………………………………………..75
3.2.3 Lignocellulosic hydrolysate………………………………………………….83
3.2.4 Media……………………………………………………………….………..84
3.2.5 Ethanol fermentation………………………………………………………....84
3.2.6 Analysis of substrates and products………………………………………….85
3.2.7 Enzyme activity analyses…………………………………………………….86
3.3 Result and discussion………………………………………………………………87
3.3.1 Composition of the CS hydrolysate………………………………….………87
3.3.2 Construction of recombinant S. cerevisiae heterogeneous expressing XYL1, XYL2, and XKS1……………………………………………………………………90
3.3.3 Enzyme activities……………………………………………………………..92
3.3.4 CS hydrolysate fermentation by recombinant S. cerevisiae………………….95
3.4 Conclusion………………………………………………………………………...100
Summarization and future aspect……………………………………………………..101
References…………………………………………………………………………….103
dc.language.isoen
dc.title利用重組酵母菌發酵纖維廢棄物產製生質酒精之研究zh_TW
dc.titleStudies on Bioethanol Production from Cellulosic Waste by Recombinant Saccharomycesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee林長平(Chan-Pin Lin),何國傑(Kuo-Chieh Ho),陳昭瑩(Chao-Ying Chen),許輔(Fuu Sheu),黃雪莉(Shir-Ly Huang)
dc.subject.keyword生質酒精,高梁酒粕,微波照射預處理,重組酵母菌,畢赤氏酵母菌,zh_TW
dc.subject.keywordBioethanol,Sorghum liquor waste,microwave irradiation pretreatment,recombinant Saccharomyces cerevisiae,Pichia stipitis,en
dc.relation.page120
dc.rights.note有償授權
dc.date.accepted2010-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved