請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47131完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳靜宜 | |
| dc.contributor.author | Ya-Hui Hsieh | en |
| dc.contributor.author | 謝雅卉 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:48:28Z | - |
| dc.date.available | 2016-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-19 | |
| dc.identifier.citation | 參考文獻
王瑋蕾。2009。瘤胃纖維分解細菌Ruminococcus albus 7細菌素生產之調控。國立台灣大學生物資源暨農學院動物科學技術學系碩士論文。pp. 1-16。 楊惠雯。2009。酵母菌表現系統於瘤胃細菌抑菌物質生產之應用。中國文化大學生物科技研究所碩士論文。pp. 9-16。 Abu-Elheiga, L., D. B. Almarza-Ortega, A. Baldini, and S. J. Wakil. 1997. Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J. Biol. Chem. 272: 10669-10677. Altshul, S. F., T. L. Madden, A. A. Scha”ffer, J. Zhang, W. Miller, and A. D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative Stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373–99. Apostol, I., P. F. Heinstein, and P. S. Low. 1989. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol. 90: 109-116. Barefoot, S. F. and C. G. Nettles. 1993. Antibiosis revisited: bacteriocins produced by dairy starter cultures. J. Dairy Sci. 76: 2366-2379. Barefoot, S. F. and T. R. Klaenhammer. 1983. Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microbiol. 45: 1808-1815. Bassler, B. L. and R. Losick. 2006. Bacterially Speaking. Cell 125: 237-246. Bauchop, T. and D. O. Mountfort. 1981. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl. Environ. Microbiol. 42: 1103-1110. Baxa, C. A., R. S. Sha, M. K. Buelt, A. J. Smith, V. Matarese, L. L. Chinander, K. L. Boundy, and D. A. Bernlohr. 1989. Human adipocyte lipid-binding protein: purification of the protein and cloning of its complementary DNA. Biochemistry 28: 8683-8690. Bernabucci, U., B. Ronchi, N. Lactera, and A. Nardone. 2005. Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows. J. Dairy Sci. 88: 2017-2026. Boyer, P. D., R. L. Cross, and W. Momsen. 1973. A New Concept for Energy Coupling in Oxidative Phosphorylation Based on a Molecular Explanation of the Oxygen Exchange Reactions. Proc. Natl. Acad. Sci. U.S.A. 70: 2837-2839. Bowman, C. M., J. E. Dahlberg, T. Ikemura, J. Koniskyt, and M. Nomura. 1971. Specific inactivation of 16S ribosomal RNA induced by colicin E3 in Vivo. Proc. Natl. Acad. Sci. U.S.A. 68: 964-968. Buja, L. M. and D. Vela. 2008. Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc. Pathol. 17: 349–374. Cadenas, E. 1989. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58: 79-110. Campbell, J. W. 1997. Mitochondrial ammonia metabolism and the proton-neutral theory of hepatic ammonia detoxication. J. Exp. Zool. 278: 308-321. Cavalheiro, R. A., F. Fortes, J. Borecky, V.C. Faustinoni, A.Z. Schreiber, and A.E. Vercesi. 2004. Respiration, oxidative phosphorylation, and uncoupling protein in Candida albicans. Braz. J. Med. Biol. Res. 37: 1455-1461. Chabowski, A., S. L. Coort, J. Calles-Escandon, N. N.Tandon, J. F. Glatz, J. J. Luiken, and A. Bonen. The subcellular compartmentation of fatty acid transporters is regulated differently by insulin and by AICAR. FEBS Lett. 579: 2428–2432. Chmurzyńska, A. 2006. The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. J. Appl. Genet. 47: 39-48. Chen, E. P., H. B. Bittner, R. D. Davis, R. J. Folz, and P. V. Trigt. 1996. Extracellular superoxide dismutase transgene overexpression preserves postischemic myocardial function in isolated murine hearts. Circulation 94: 412-417. Chen, J., D. M. Stevenson, and P. J. Weimer. 2004. Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens. Appl. Environ. Microbiol. 70: 3167-3170. Chen, S. H., T. P. Van, D. H. Ledbetter, L. C. Smith, and L. Chan. 1986. Human liver fatty acid binding protein gene is located on chromosome 2. Somat. Cell Mol. Genet. 12: 303–6. Chen, W. J., D. A. Andres, J. L. Goldstein, and M. S. Brown. 1991. Cloning and expression of a cDNA encoding the alpha subunit of rat p21ras protein farnesyltransferase. Proc. Natl. Acad. Sci. 88: 11368-11372. Craig, W. M., D. R. Brown, G. A. Broderick, and D. B. Ricker. 1987. Post-prandial compositional changes of fluid- and particle-associated ruminal microorganisms. J. Anim. Sci. 65: 1042-1048. Darimont, C., N. Gradoux, F. Cumin, H. P. Baum, and A. D. Pover. 1998. Differential regulation of intestinal and liver fatty acid-binding proteins in human intestinal cell line (Caco-2): role of collagen. Exp. Cell Res. 244: 441–447. Dehority, B. A. and H. W. Scott. 1967. Extent of Cellulose and Hemicellulose Digestion in Various Forages by Pure Cultures of Rumen Bacteria. J. Dairy Sci. 50: 1136-1141. Dice, J. F. 2007. Chaperone-mediated autophagy. Autophagy 3: 295-299. Diep, D. B., L. Axelsson, C. Grefsli, and I. F. Nes. 2000. The synthesis of the bacteriocin sakacin A is a temperature-sensitive process regulated by a pheromone peptide through a three-component regulatory system. Microbiology 146: 2155-2160. Dykes, G. A. and J. W. Hastings. 1997. Selection and fitness in bacteriocin-producing bacteria. Proc. R. Soc. Lond B Biol. Sci. 264: 683-687. Dyck, J. R. B., N. Kudo, A. J. Barr, S. P. Davies, D. G. Hardie, and G. D. Lopaschuk. 1999. Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and 5′-AMP activated protein kinase. Eur. J. Biochem. 262: 184-190. Eaton, R. P. 1971. Synthesis of plasma triglycerides in endogenous hypertriglyceridemia. J. Lipid Res. 12: 491–497. Eaton, R. P.1976. Glucagon and lipoproteins. Metabolism 25: 1415–1417. Eaton, S., K. Bartlett, M. Pourfarzam. 1996. Mammalian mitochondrial beta-oxidation. Biochem. J. 320: 345-357. el-Nahas, S. M., F. E. Mattar, and A. A. Mohamed. 1993. Radioprotective effect of vitamins C and E. Mutat. Res. 301: 143-147. Engberding, N., S. Spiekermann, A. Schaefer, A. Heineke, A. Wiencke, M. Muller, M. Fuchs, D. Hilfiker-Kleiner, B. Homig, H. Drexler, and U. Landmesser. 2004. Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: a new action for an old drug? Circulation 110: 2175-2179. Foster, D. O. and Frydman M. L. 1978. Nonshivering thermogenesis in the rat. II. Measurements of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis induced by noradrenaline. Can. J. Physiol. Pharmacol. 56:110-122. Giordano, F. J. 2005. Oxygen, oxidative stress, hypoxia, and heart failure. Clin. Invest. 115: 500–508. Gresser, M. J., J. A. Myers, and P. D. Boyer. 1982. Catalytic site cooperativity of beef heart mitochondrial F1, adenosine triphosphatase. J. Biol. Chem. 257: 12030-12038. Guerra, L., E Cerbai, S Gessi, A. Borea, and A. Mugelli. 1996. The effect of oxygen free radicals on calcium current and dihydropyridine binding sites in guinea-pig ventricular myocytes. Br. J. Pharmacol. 118: 1278-1284. Hackenbrock, C. R., B. Chazotte, and S. S. Gupte. 1986. The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J. Bioenerg. Biomembr. 18: 331-368. Halliwell, B. and J. M. C. Gutteridge. 1989. Free Radicals in Biology and Medicine. 2nd ed. pp. 47-81. Harrison, F. A., R. D. Keynes, J. C. Rankin, and L. Zurich. 1975. The effect of ouabain on ion transport across isolated sheep rumen epithelium. J. Physiol. 249: 669-677. Hazlewood, G. P., N. G. Clarke, and R. M. Dawson. 1980. Complex lipids of a lipolytic and general-fatty-acid-requiring Butyrivibrio sp. isolated from the ovine rumen. Biochem. J. 191: 555-560. Hobson, P. N. 1989. The Rumen Microbial Ecosystem. 2nd ed. Elsevier Science, U.S.A. pp1-184. Horton, R., L. A. Moran, G. Scrimgeour, M. Perry, and D. Rawn. 2006. Principles of Biochemistry. 4th ed. Prentice Hall, U.K. pp 121-549. Hsu, J. T., G. C. Fahe, N. R. Merchen, and R. I. Mackie. 1991. Effects of defaunation and various nitrogen supplementation regimens on ruminal microbial density and activity. J. Anim. Sci. 69: 1279. Hungate, R. E., W. Smith, and R. T. Clarke. 1966. Suitability of butyl rubber stoppers for closing anaerobic roll culture tubes. J. Bacteriol. 91: 908-909. Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of gram-positive bacteria. Appl. Environ. Microbiol. 59: 171-200. Jager, S., C. Handschin, J. St-Pierre, and B. M. Spiegelman. 2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. U.S.A. 104: 12017–12022. Jezek, P., H. Engstova, M. Zackova, A. E. Vercesi, A. D. Costa, P. Arruda, and K. D. Garlid. 1998. Fatty acid cycling mechanism and mitochondrial uncoupling proteins. Biochim. Biophys. Acta. 1365: 319–327. Joerger, R. D. 2003. Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82: 640-647. Kadookal, Y., M. Sato, K. Imaizumi, A. Ogawa, K. Ikuyama, Y. Akai, M. Okano, M. Kagoshima, and T. Tsuchida. 2010. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 64: 636–643. Kajimoto, O., H. Hirata, S. Aoe, T. Takahashi, Y. Suzuki, and H. Tanaka. 2002. Fermented milk containing Lactobacillus gasseri (SP strain) decreases serum cholesterol concentration in men with boundary and mild hypercholesterolemia. Jpn. J. Lactic Acid Bacteriol. 13: 114–124. Kalmokoff, M. L., F. Bartlett, and R. M. Teather. 1996. Are ruminal bacteria armed with bacteriocins? J. Dairy Sci. 79: 2297-2306. Kamra, D. N. 2005. Rumen microbial ecosystem. Curr. Sci. 89: 124-135. Kerner, J. and C. L. Hoppel. 2002. Radiochemical malonyl-CoA decarboxylase assay: activity and subcellular distribution in heart and skeletal muscle. Anal. Biochem. 306: 283–289. Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-85. Kleerebezem, M. and L. E. Quadri. 2001. Peptide pheromone-dependent regulation of antimicrobial production in Gram-positive bacteria: a case of multicellular behavior peptide. Peptides 22: 1579–1596. Koike, S. and Y. Kobayashi. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204: 361-366. Krause, D. O., S. E. Denman, R. I. Mackie, M. Morrison, A. L. Rae, G. T. Attwood, and C. S. McSweeney. 2003. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol. Rev. 27: 663-693. Kudo, N., A. J. Barr, R. L. Barr, S. Desai, and G. D. Lopaschuk. 1995. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J. Biol. Chem. 270: 17513–17520. Kuipers, O. P., M. M. Beerthuyzen, R. J. Siezen, and W. M. De Vos. 1993. Characterization of the nisin gene cluster nisabtczpr of Lactococcus lactis requirement of expression of the nisA and nisZ genes for development of immunity. Eur. J. Biochem. 261: 281-291. Kulisz, A., N. Chen, N. S. Chandel, Z. Shao, and P. T. Schumacker. 2002. Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am. J. Physiol. Lung Cell Mol. Physiol. 282: 1324-1329. Kunau, W. H. 2005. Peroxisome biogenesis: end of the debate. Curr. Biol. 15: 774-776. Kunau, W. H., S. Buhne, de la Garza M, C. Kionka, M. Mateblowski, U. Schultz-Borchard, and R. Thieringer. 1988. Comparative enzymology of beta-oxidation. Biochem. Soc. Trans. 16: 418-420. Kunau, W. H., V. Dommes, and H. Schulz. 1995. Beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Proq. Lipid Res. 34: 267-342. Laukova, A. and M. Marekova. 1993. Antimicrobial spectrum of bacteriocin-like substances produced by rumen staphylococci. Folia Microbiol. (Praha) 38: 74-76. Lazarow, J. B., and C. De Duve. 1976. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc. Natl. Acad. Sci. U.S.A. 73: 2043-2046. Lee, W. J., M. Kim, H. S. Park, H. S. Kim, M. J. Jeon, K. S. Oh, E. H. Koh, J. C. Won, M. S. Kim, G. T. Oh, M. Yoon, K. U. Lee, and J. Y. Park. 2006. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARα and PGC-1. Biochem. Biophys. Res. Commun. 340: 291–295. Lefer, D. J. and D. N. Granger. 2000. Oxidative stress and cardiac disease. Am. J. Med. 109: 315-323. Lehman, J. J., P. M. Barge, A. Kovacs, J. E. Saffitz, D. M. Medeiros, and D. P. Kelly1. 2000. Peroxisome proliferator–activated receptor g coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest. 106: 847–856. Li, S. J. and J. E. Cronan. 1993. Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis. J. Bacteriol. 175: 332-340. Lopaschuk, G. D., J. R. Ussher, C. D. L. Folmes, J. S. Jaswal, and W. C. Stanley. 2010. Myocardial Fatty Acid Metabolism in Health and Disease. Physiol. Rev. 90: 207–258. Lopaschuk, G. D., L. A. Witters, T. Itoi, R. Barr, and A. Barr. 1994. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J. Biol. Chem. 269: 25871–25878. Luiken, J. J. F. P., S. L. M. Coort, D. P. Y. Koonen, D. J. van der Horst, A. Bonen, A. Zorzano, and J. F. C. Glatz. 2004. Regulation of cardiac longchain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch. 448: 1–15. Lykkesfeldt, J. and O. Svendsen. 2007. Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet. J. 173: 502-511. Mackie, R. I. and B. A. White. 1997. Gut environment and evolution of mutualistic fermentative digestion. International Thomosn, U.S.A. pp 1-32. Mailloux, R. J., T. Dumouchel, C. Aguer, R. deKemp, R. Beanlands, and M. E. Harper. 2011. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration. Biochem. J. 437: 301–311. Manevich, Y., T. Sweitzer, J. H. Pak, S. I. Feinstein, V. Muzykantov, and A. B. Fisher. 2002. 1-Cys peroxiredoxin overexpression protects cells against phospholipid peroxidation-mediated membrane damage. Proc. Natl. Acad. Sci. U.S.A. 99: 11599–11604. Manning, N. J., N. P. Davies, S. B. Olpin, K. H. Carpenter, M. F. Smith, R. J. Pollitt, S. L. B. Duncan, A. Larssons and B. Carlson. 1994. Renatal diagnosis of glutathione synthase deficiency. Prenat. Diagn. 14: 475-478. Masaki, H. and T. Ogawa. 2002. The modes of action of colicins E5 and D, and related cytotoxic tRNases. Biochimie 84: 433–438. Matsui, Y., H. Takagi, X. Qu, M. Abdellatif, H. Sakoda, T. Asano, B. Levine, and J. Sadoshima. 2007. Distinct roles of autophagy in the heart during ischemia and reperfusion. Circ. Res. 100: 914-22. McCracken, B. A., M. E. Spurlock, M. A. Roos, F. A. Zuckermann, and H. R. Gaskins. 1999. Weaning anorexia may contribute to local inflammation in the piglet small intestine. J. Nutr. 129: 613-619. McCullough, A. J. and A. S. Tavill. 1991. Disordered energy and protein metabolism in liver disease. Semin. Liver Dis. 11 :265-77. McGarry, J. D. and N. F. Brown. 1997. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 244: 1-14. Miller, T. L. and M. J. Wolin. 1995. Bioconversion of cellulose to acetate with pure cultures of Ruminococcus albus and a hydrogen-using acetogen. Appl. Environ. Microbiol. 61: 3832-3835. Miron, J., D. Ben-Ghedalia, and M. Morrison. 2001. Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84: 1294-1309. Misra, M. K., M. Sarwat, P. Bhakuni, R. Tuteja, and N. Tuteja. 2009. Oxidative stress and ischemic myocardial syndromes. Med. Sci. Monit. 15: 209-219. Mizushima, N., B. Levine, A. M. Cuervo, and D. J. Klionsky. 2008. Autophagy fights disease through cellular self-digestion. Nature 451: 1069-1075. Nakamura, K., K. Fushimi, H. Kouchi, K. Mihara, M. Miyazaki, T. Ohe, and M. Namba. 1998. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor- and angiotensin II. Circulation 98: 794-799. Nagata, D. and Y. Hirata. 2010. The role of AMP-activated protein kinase in the cardiovascular system. Hypertens. Res. 33: 22-28. Neely, J. R. and H. E. Morgan. 1974. Relationship between carbohydrate metabolism and energy balance of heart muscle. Annu. Rev. Physiol. 36: 413–459. Nes, I. F., D. B. Diep, L. S. Havarstein, M. B. Brurberg, V. Eijsink, and H. Holo. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70: 113-128. O’keeffe T., C. Hill, and R. P. Ross. 1999. Characterization and heterologous expression of the gene encoding enterocin a production, immunity, and regulation in Enterococcus faecium DPC1146. Appl. Environ. Microbiol. 65: 1506-1515. Odenyo, A. A., R. I. Mackie, D. A. Stahl, and B. A. White. 1994a. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Appl. Environ. Microbiol. 60: 3688-3696. Odenyo, A. A., R. I. Mackie, D. A. Stahl, and B. A. White. 1994b. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Appl. Environ. Microbiol. 60: 3688-3696. Ohkawa I., B. Maruo, and M. Kageyama. 1974. Preferential inhibition of lipid synthesis by the bacteriocin pyocin S2. J. Biochem. 78: 213-233. Ohno-lwashita, Y. and K. Imahori. 1982. Assignment of the functional loci in the colicin E1 molecule by characterization of its proteolytic fragments. J. Biol. Chem. 257: 6446-6451. Parret, A. H. A., K. Temmerman, and R. De Mot. 2005. Novel Lectin-Like Bacteriocins of Biocontrol Strain Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 73: 5197-5207. Plate, C. A. and S. E. Luria. 1972. Stages in Colicin K Action, as Revealed by the Action of Trypsin. Proc. Natl. Acad. Sci. U.S.A. 69: 2030-2034. Reddy, J. K. and G. P. Mannaerts 1994. Peroxisomal lipid metabolism. Annu. Rev. Nutr. 14: 343-370. Rhee, S. G., S. W. Kang, L. E. Netto, M. S. Seo, and E. R. Stadtman. 1999. A family of novel peroxidases, peroxiredoxins. Biofactors 10: 207-209. Riley, M. A. and J. E. Wertz. 2002. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84: 357-364. Rousset, S., M. C. Alves-Guerra, J. Mozo, B. Miroux, A. M. CassardDoulcier, F. Bouillaud, and D. Ricquier. 2004. The biology of mitochondrial uncoupling proteins. Diabetes 53: 130–135. Rock, C. O. and J. O. Cronan. 1996. Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Biochim. Biophys. Acta. 1302: 1-16. Ruiz-Barba, J. L., D. P. Cathcart, P. J. Warner, and R. Jimenez-Diaz. 1994. Use of Lactobacillus plantarum LPCO10, a Bacteriocin Producer, as a Starter Culture in Spanish-Style Green Olive Fermentations. Appl. Environ. Microbiol. 60: 2059-2064. Russell, J. B. and D. B. Dombrowski. 1980. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol. 39: 604-610. Russell, J. B. and H. C. Mantovani. 2002. The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics. J. Mol. Microbiol. Biotechnol. 4: 347-355. Russell, J. B. and J. L. Rychlik. 2001. Factors that alter rumen microbiaol ecology. Science 292: 1119-1122. Schnell, N., K. D. Entian, U. Schneider, F. Gotz, H. Zahner, R. Kellner, and G. Gung. 1988. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333: 276 – 278. Seddon, M., Y. H. Looi, and A. M. Sham. 2007. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93: 903-907. Seril, D. N., J. Liao, G. Y. Yang, and C. S. Yang. 2003. Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis 24: 353-362. Shi, H., C. L. Odt, and P. J. Weimer. 1997. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl. Environ. Microbiol. 63: 734-742. Shriver, B. J., W.H. Hoover, J.P. Sargent, R.J. Crawford Jr. and W.V. Thayne. 1986. Fermentation of a high concentrate diet as affected by ruminal pH and digesta flow. J. Dairy Sci. 69: 413-419. Skulachev, V. P. 1982. The localized delta muH+ problem. The possible role of the local electric field in ATP synthesis. FEBS Lett. 146: 1-4. Smith, R. H. and A. B. McAllan. 1973. Chemical composition of rumen bacteria. Proc. Nutr. Soc. 32: 9-10. Stack, R. J. and M. A. Cotta. 1986. Effect of 3-phenylpropanoic acid on growth of and cellulose utilization by cellulolytic ruminal bacteria. Appl. Environ. Microbiol. 52: 209-210. Tagg, J. R., A. S. Dajani, and L. W. Wannamaker. 1976. Bacteriocins of Gram-Positive Bacteria. Bacteriol. Rev. 40: 722-756. Takahashi, H., T. Fujita, Y. Suzuki, and Y. Benno. 2006. Monitoring and survival of Lactobacillus gasseri SBT2055 in the human intestinal tract. Microbiol. Immunol. 50: 867–870. Takano, H., Y. Zou, H. Hasegawa, H. Akazawa, T. Nagai, and I. Komuro. 2003. Oxidative stress-induced signal transduction pathways in cardiac myocytes: Involvement of ros in heart diseases. Antioxid. Redox Signal. 5: 789-794. Tanaka, T., Y. Hirota, K. Sohmiya, S. Nishimura, and K. Kawamura. 1991. Serum and urinary human heart fatty acid-binding protein in acute myocardial infarction. Clin. Biochem. 24: 195–201. Tang, M., B. Laarveld, A. G. Van Kessel, D. L. Hamilton, A. Estrada, and J. F. Patience. 1999. Effect of segregated early weaning on postweaning small intestinal development in pigs. J. Anim. Sci. 177: 3191-3200 Tomita, K., T. Ogawa, T. Uozumi, K. Watanabe, and H. Masaki. 2000. A cytotoxic ribonuclease which specifically cleaves four isoaccepting arginine tRNAs at their anticodon loops. Proc. Natl. Acad. Sci. U.S.A. 97: 8278-8283. Torkko, J. M., K. T. Koivuranta, A. J. Kastaniotis, T. T. Airenne, T. Glumoff, M. Ilves, A. Hartig, A. Gurvitz, and J. K. Hiltunen. 2003. Candida tropicalis expresses two mitochondrial 2-enoyl thioester reductases that are able to form both homodimers and heterodimers. J. Biol. Chem. 278: 41213-41220. Turk, D. E. 1982. Theanatomy of avian digestive tract as related to feed utilization. Poult. Sci. 77: 75-82. Usman, H. A. 1999. Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J. Dairy Sci. 82: 243–248. van Leeuwen, P., A. J. M. Jansman, J. Wiebenga, J. F. J. G. Koninkx, and J. M. V. M. Mouwen. 1995. Dietary effects of faba-bean(Vicia faba L.)tannins on the morphology and function of the small-intestinal mucosa of weaned pigs. Br. J. Nutr. 73: 31-39. Vanden Hoek, T. L., C. Li, Z. Shao, P. T. Schumacker, and L. B. Becker. 1997. Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J. Mol. Cell Cardiol. 29: 2571-2583. Varel, V. H. and B. A. Dehority. 1989. Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets. Appl. Environ. Microbiol. 55: 148-153. Veira, D. M., M. Ivan, and P. Y. Jui. 1983. Rumen ciliate protozoa: effects on digestion in the stomach of sheep. J. Dairy Sci. 66: 1015-1022. Wang, Y., Y. Manevich, S. I. Feinstein, and A. B. Fisher. 2004. Adenovirusmediated transfer of the 1-cys peroxiredoxin gene to mouse lung protects against hyperoxic injury. Am. J. Physiol. Lung Cell Mol. Physiol. 286: 1188–1193. Wang, X., S. A. Phelan, K. Forsman-Semb, E. F. Taylor, C. Petros, A. Brown, C. P. Lerner, and B. Paigen. 2003. Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. J. Biol. Chem. 278: 25179-25190. Wang, H. T., C. Yu, Y. H. Hsieh, S. W. Chen, B. J. Chen, and C. Y. Chen. 2011. Effect of Albusin B (Bacteriocins) of Ruminococcus albus 7 expressed by yeast on growth performance and intestinal absorptions of broiler chickens-the potential role as an alternative to feed antibiotics. J. Sci. Food Agric. Aceepted. Yamauchi, K. and Y. Isshiki. 1991. Scanning electron microscopic observations on the intestinal villi in growing white leghorn and broiler chickens from 1 to 30 days of age. Br. Poult. Sci.32: 67-78. Yoder, R. D., A. Trenkle, and W. Burroughs. 1966. Influence of rumen protozoa and bacteria upon cellulose digestion in vitro. J. Anim. Sci. 25: 609-612. Youssef, M. Y., A. M. el-Ridi, M. S. Arafa, M. F. el-Sawy, and W. M. el-Sayed. 1985. Effect of levamisole on toxoplasmosis during pregnancy in guinea-pigs. J. Egypt. Soc. Parasitol. 15: 41-48. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47131 | - |
| dc.description.abstract | Albusin B 為Ruminococcus albus 7分泌之細菌素,分子量32 kDa,藉由Saccharomyces cerevisiae表現系統大量製備。先前的試驗指出,添加R. albus 7分泌之albusin B於肉雞飼料,有助於小腸營養分吸收,抑制腸道有害病原菌,進而促進肉雞生長效能。故第一部分研究目的為探討由R. albus 7分泌的細菌素對動物脂肪代謝的影響。本部分研究以六週齡BALB/c公鼠為實驗模式,飼料及飲水不限,隨機分成3組:控制組、酵母菌 (0.125 μg /g體重)、酵母菌加albusin B (0.125μg /g 體重),連續灌食14天後犧牲,觀察其生理表現及血液的脂肪代謝。與控制組比較,灌食albusin B不影響小鼠採食量,但體重有下降的趨勢。該組別的小鼠血液中三酸甘油酯與游離脂肪酸下降,而血中總膽固醇、高密度脂蛋白上升(P <0.05)。在腸道型態上,相較於控制組與酵母菌組,餵飼albusin B之小鼠有較高的迴腸絨毛高度(P <0.05)。相較於控制組,餵飼albusin B小鼠之迴腸、肝臟與心臟皆有較高脂肪酸運輸蛋白與脂肪酸氧化酵素acyl-CoA oxidase(ACO)基因表現(P <0.05);在肝臟中有較低之脂肪酸合成酵素acetyl-CoA carboxylase (ACC)之基因表現;在心臟與肝臟中有較低之脂肪酸合成酵素fatty acid synthase (FAS) 之基因表現 (P <0.05)。且在餵飼albusin B小鼠之迴腸與肝臟中有較低之三酸甘油酯合成酵素acyl transferase之基因表現 (P <0.05)。此外,餵飼albusin B之小鼠心臟與肝臟中ATP生成較高,並增加抗氧化能力。由上述結果可知albusin B可增加小鼠腸道脂肪酸吸收,促進肝臟與心臟之脂肪酸氧化,降低脂肪酸合成,因此可降低小鼠體重。
第二部分研究目的為探討albusin B之添加對心肌細胞(H9c2)和小腸細胞(Caco2)脂肪酸代謝與抵抗氧化壓力之保護效果。利用H2O2誘發氧化壓力。結果顯示albusin B可促進細胞存活率,且增加脂肪酸運送與ACO基因表現,並提高ATP產量 (P <0.05)。當細胞處於氧化壓力下,albusin B提升細胞存活率,且有較高ACO與抗氧化酵素glutathione transferase之基因表現,並促進ATP生成。由上述結果可知即使在氧化壓力下, albusin B可促進脂肪酸氧化,且增強抗氧化系統,並提高細胞存活率。 綜合試驗結果可知,健康的狀態下,albusin B可促進脂肪氧化,提高能量生成,且減少小鼠體重。在氧化壓力下,albusin B也可提升脂肪氧化,並促進抗氧化機制。綜觀上述,albusin B可增加脂肪代謝,但詳細機制還須進一步探討。 | zh_TW |
| dc.description.abstract | Albusin B (bacteriocin), a 32 kDa protein, is isolated from Ruminococcus albus 7 and mass-produced by the Saccharomyces cerevisiae expression system. In previous study, we found that broilers supplemented with albusin B had a better intestinal absorption of protein and carbohydrate, and thus caused greater growth performance. The first objective of this study was to elucidate the effect of albusin B on lipid metabolism of healthy mice. Twenty-four of BALB/c male mice at age of 6 weeks were randomly assigned into 3 groups: normal saline (control), yeast ( 0.125μg /g BW ) , yeast with albusin B ( albusin B, 0.125μg /g BW ) with daily oral administration for 14 days exhibited until sampling. Compared with the control, mice with albusin B treatment decreased body weight, lowered plasma triglyceride and free fatty acids, but increased plasms total cholesterol and high density lipoproteins (P <0.05). In the intestinal morphology, mice oral administrated with albusin B displayed higher villus lenght in the ileum than those of the other two groups (P <0.05). Mice with yeast alone or administrated with yeast + albusin B had a higher mRNA expression of fatty acid binding proteins and acyl-CoA oxidase(ACO) in the ileum, heart and liver than those of control mice (P <0.05). Compared with the control mice, yeast only and albusin B treatments caused a decreased mRNA expression of hepatic acetyl-CoA carboylase (ACC) and n fatty acid synthase (FAS) in the heart and liver (P <0.05). Moreover, albusin B administration also suppressed mRNA level of diacylglycerol acyltransferase, responsible for triglyceride synthesis in the ileum and liver (P <0.05). Mice albusin B treatment also exhibited better ATP production and antioxidant capability in the heart and liver of mice (P <0.05). To sum up, these results demonstrated that albusin B treatment increased the intestinal lipid absorption, while it enhanced lipid oxidation but decreased the lipid synthesis in liver and heart, and therefore may accoumt for the decresed BW of mice orally doesd with albusin B.
The second objective of this study was to elucidate the role of albusin B on lipid metabolism of cardiomyocytes(H9c2) and intestinal cell(Caco2) under oxidative stress. Hydrogen peroxide was applied to induce oxidative stress. The results showed that H9c2 and Caco2 with albusin B treatment had higher cell viability, and increased uptake and oxidation of fatty acid and ATP production when compared to the control (P <0.05). Consistent results were also observed in both of cell lines under oxidative stress. The mRNA expressions of ACO and antioxidative enzymes were upregulated and ATP production was increased by albusin B. The beneficial effect thus may improve cell survival rate. Taken together, under healthy condition, albusin B treatment promotes the lipid oxidation and ATP production but reduces the lipid synthesis and therefore cause body weight loss in mice. Under oxidative stress, treatment of albusin B increases energy metabolism and improves antioxidative system, and therefore improves the cell viability. This study demonstrated beneficial effect of albusin B on lipid metabolism and body weight. More comprehensive studies, however, required to elucidate the mechanism. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:48:28Z (GMT). No. of bitstreams: 1 ntu-100-R98626019-1.pdf: 731564 bytes, checksum: 88a3e397dce8449881061cf1dc27f9f2 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目錄Ⅰ
圖目錄Ⅴ 表目錄Ⅶ 中文摘要Ⅷ 英文摘要Ⅹ 第一章、文獻檢討1 壹、瘤胃微生物1 一、瘤胃1 二、瘤胃微生物2 貳、細菌素3 一、簡介3 二、瘤胃細菌素5 參、Albusin B 7 一、Ruminococcus albus 7 二、Albusin B 基因8 肆、能量代謝9 一、簡介9 二、心臟能量代謝12 伍、氧化壓力14 一、心臟之氧化壓力16 二、腸道之氧化壓力17 陸、研究目的17 第二章、材料與方法18 壹、動物試驗18 一、實驗動物18 二、Albusin B與酵母菌的製備18 三、蛋白質濃度測定18 四、血液生化值19 五、肝臟組織三酸甘油酯測定20 六、基因表現21 七、腸道絨毛完整性檢測23 八、ATP產量測定23 九、呼吸商測定23 十、抗氧化能力檢測24 貳、細胞試驗25 一、細胞培養25 二、過氧化氫配製25 三、Albusin B製配與配製25 四、細胞存活率26 五、基因表現26 六、ATP產量測試29 七、抗氧化能力檢測30 参、統計方式30 第三章、試驗結果31 壹、Albusin B對健康動物生理之效應31 一、Albusin B對於小鼠生理之影響31 二、Albusin B對於脂肪酸代謝之表現32 三、Albusin B對於小鼠代謝能之影響34 貳、氧化壓力下albusin B之效應48 一、心肌細胞株H9c248 (一)氧化壓力條件之建立48 (二)不同濃度之albusin B對細胞之效應48 (三)Albusin B 對心肌細胞於氧化壓力下之作用48 (四)Albusin B對於細胞脂肪酸代謝之影響49 (五)Albusin B抗氧化之作用50 二、結腸癌細胞株Caco258 (一)氧化壓力條件之建立58 (二)不同濃度之albusin B對細胞之效應58 (三)氧化壓力下,albusin B 保護細胞存活之能力58 (四)Albusin B對於細胞脂肪酸代謝之影響58 (五)Albusin B抗氧化之作用59 第四章、問題與討論66 壹、健康生理之效應66 一、與先前雞隻試驗比較66 二、腸道吸收之判斷66 三、Albusin B對脂肪代謝之效應67 貳、氧化壓力之效應67 一、氧化壓力下,albusin B對脂肪代謝之效應68 二、Albusin B之抗氧化效應68 第五章、結論70 第六章、參考文獻71 第七章、附錄86 | |
| dc.language.iso | zh-TW | |
| dc.subject | Albusin B | zh_TW |
| dc.subject | 小鼠 | zh_TW |
| dc.subject | 結腸癌細胞 | zh_TW |
| dc.subject | 心肌細胞 | zh_TW |
| dc.subject | 脂肪酸代謝 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | albusin B | en |
| dc.subject | colon carcinoma cell line | en |
| dc.subject | cardiomyocytes | en |
| dc.subject | mice | en |
| dc.subject | ATP production | en |
| dc.subject | fatty acid metabolism | en |
| dc.title | 口服細菌素 albusin B 促進脂肪酸氧化 | zh_TW |
| dc.title | Oral administration of bacterocin, albusin B, improved fatty acid oxidation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 丁詩同,陳洵一,王翰聰,徐濟泰 | |
| dc.subject.keyword | Albusin B,脂肪酸代謝,氧化壓力,小鼠,心肌細胞,結腸癌細胞, | zh_TW |
| dc.subject.keyword | albusin B,fatty acid metabolism,ATP production,mice,cardiomyocytes,colon carcinoma cell line, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 714.42 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
