Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47126
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許永真(Yung-Jen Hsu)
dc.contributor.authorShih-Chiang Leeen
dc.contributor.author李世強zh_TW
dc.date.accessioned2021-06-15T05:48:19Z-
dc.date.available2011-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citation[1] Activities of daily life.
[2] M. Chetty, D. Tran, and R. Grinter. Getting to green: understanding resource consumption in the home. In Proceedings of the 10th international conference on Ubiquitous computing, pages 242–251. ACM, 2008.
[3] S. Darby. The effectiveness of feedback on energy consumption. A Review for DEFRA of the Literature on Metering, Billing and direct Displays, 2006.
[4] Google. Google powermeter.
[5] R. Harle and A. Hopper. The potential for location-aware power management. In Proceedings of the 10th international conference on Ubiquitous computing, pages 302–311. ACM, 2008.
[6] C. Harris and V. Cahill. Exploiting user behaviour for context-aware power management. In Proceedings of the Interntaional Conference On Wireless and Mobile Computing, Networking, and Communications, pages 122–130, 2005.
[7] C. Harris and V. Cahill. An empirical study of the potential for context-aware power management. In UbiComp 2007: Ubiquitous Computing, pages 235–252. Springer, 2007.
[8] G. Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80(12):1870–1891, 1992.
[9] Y. Kim, T. Schmid, Z. M. Charbiwala, and M. B. Srivastava. Viridiscope: design and implementation of a fine grained power monitoring system for homes. In Ubicomp ’09: Proceedings of the 11th international conference on Ubiquitous computing, pages 245–254, New York, NY, USA, 2009. ACM.
[1] Activities of daily life.
[2] M. Chetty, D. Tran, and R. Grinter. Getting to green: understanding resource consumption in the home. In Proceedings of the 10th international conference on Ubiquitous computing, pages 242–251. ACM, 2008.
[3] S. Darby. The effectiveness of feedback on energy consumption. A Review for DEFRA of the Literature on Metering, Billing and direct Displays, 2006.
[4] Google. Google powermeter.
[5] R. Harle and A. Hopper. The potential for location-aware power management. In Proceedings of the 10th international conference on Ubiquitous computing, pages 302–311. ACM, 2008.
[6] C. Harris and V. Cahill. Exploiting user behaviour for context-aware power management. In Proceedings of the Interntaional Conference On Wireless and Mobile Computing, Networking, and Communications, pages 122–130, 2005.
[7] C. Harris and V. Cahill. An empirical study of the potential for context-aware power management. In UbiComp 2007: Ubiquitous Computing, pages 235–252. Springer, 2007.
[8] G. Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80(12):1870–1891, 1992.
[9] Y. Kim, T. Schmid, Z. M. Charbiwala, and M. B. Srivastava. Viridiscope: design and implementation of a fine grained power monitoring system for homes. In Ubicomp ’09: Proceedings of the 11th international conference on Ubiquitous computing, pages 245–254, New York, NY, USA, 2009. ACM.
[10] P. Kuo. A Study on Electrical Consumption Survey and Evaluation System of Residential Buildings. PhD thesis, NCKU, 2005.
[11] Y.-l. Kuo, K.-y. Chiang, C.-w. Chan, J.-C. Lee, R. Wang, E. Shen, and J. Y.-j. Hsu. Community-based game design: Experiments on social games for commonsense data collection. In KDD-09 Workshop on Human Computation (HCOMP2009), Paris, France, June 2009.
[12] C. Lin. Ipars: Intelligent portable activity recognition system. Master’s thesis, National Taiwan University, 2006.
[13] C. Lin and J. Hsu. Ipars: Intelligent portable activity recognition system via everyday objects, human movements, and activity duration. In 2006 AAAI Workshop on Modeling Others from Observations, Technical Report WS-06-13, pages 44–52.
[14] G.-y. Lin, S.-c. Lee, J. Y.-j. Hsu, and W.-r. Jih. Applying power meters for appliance recognition on the electric panel. In Proceedings of The 5th IEEE Conference on Industrial Electronics and Applications (ICIEA2010), Taichung, Taiwan, June 2010. [EI, ISI].
[15] H. Liu and P. Singh. Conceptnet—a practical commonsense reasoning tool-kit. BT Technology Journal, 22(4):211–226, 2004.
[16] Microsoft. Microsoft hohm.
[17] B. of Energy. Taiwan energy statistics.
[18] P. Palmes, H. K. Pung, T. Gu, W. Xue, and S. Chen. Object relevance weight pattern mining for activity recognition and segmentation. Pervasive Mob. Comput., 6(1):43–57, 2010.
[19] M. Perkowitz, M. Philipose, K. Fishkin, and D. J. Patterson. Mining models of human activities from the web. In WWW ’04: Proceedings of the 13th international conference on World Wide Web, pages 573–582, New York, NY, USA, 2004. ACM.
[20] D. Wyatt, M. Philipose, and T. Choudhury. Unsupervised activity recognition using automatically mined common sense. In In AAAI, pages 21–27, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47126-
dc.description.abstractProviding energy conservation services becomes a hot research topic because more and more people attach importance to environmental protection. This research proposes a framework that consists of two main elements, including activity-appliance model and irrelevant appliance detection. First of all, an activity-appliance model has been built to associate activities with appliances according to the data of common sense. For instance, oven is used for cook, draught fan is used for hair drying, etc. Then, using the relationships can help to recognize the resident’s current activity and detect irrelevant appliance, which are consuming electric power but not take part in the current activities. Finally, the analysis of activity-appliance models shows most appliances are strong activity-related. Such a property offers benefit to identify activity and detect irrelevant appliance. The experimental results show that the work can achieve higher than 74% accuracy for activity recognition, and receive a low false alarm for detection of irrelevant appliance in a real home environment.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:48:19Z (GMT). No. of bitstreams: 1
ntu-99-R97922026-1.pdf: 909759 bytes, checksum: 2fd6c49290bd380c51ba6c2393f2e8a1 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAcknowledgments i
Abstract iii
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Related Work 5
2.1 Energy Conservation Issues and Application . . . . . . . . . . . . . . . . 5
2.1.1 Providing Energy Information and Saving Tips . . . . . . . . . . 5
2.1.2 Context-Aware Applications . . . . . . . . . . . . . . . . . . . . 6
2.2 Activity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Sensor-Based Approaches . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Web-Based Approaches . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Commonsense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 3 Energy Conservation Service 11
3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.1 Term and Notation Definition . . . . . . . . . . . . . . . . . . . 13
3.1.2 Activity-Appliance Model . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Detection of Irrelevant Appliance . . . . . . . . . . . . . . . . . 16
Chapter 4 Activity-Appliance Model 19
4.1 Activity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Data Collecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Data Source: Common Sense . . . . . . . . . . . . . . . . . . . 20
4.2.2 Common Sense Collected Question . . . . . . . . . . . . . . . . 22
4.2.3 Common Sense Relation . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1 Voting Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2 Concept Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.3 Rule Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Weight Calculating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Chapter 5 Irrelevant Appliance Detection System 29
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Processes of detecting irrelevant appliance system . . . . . . . . . . . . . 30
5.2.1 Selecting Target Appliances . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Short Query Transforming . . . . . . . . . . . . . . . . . . . . . 32
5.2.3 Activities Similarity Computing . . . . . . . . . . . . . . . . . . 34
5.2.4 Irrelevant Appliances Detecting . . . . . . . . . . . . . . . . . . 34
Chapter 6 Experiment and Evaluation 37
6.1 Activity-Appliance Model . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.2 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Irrelevant Appliances Detection . . . . . . . . . . . . . . . . . . . . . . 43
6.2.1 Evaluation Interface Design . . . . . . . . . . . . . . . . . . . . 44
6.2.2 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.3 Result of Recognizing Electricity Activity . . . . . . . . . . . . . 48
6.2.4 Result of Detecting Irrelevant Appliances . . . . . . . . . . . . . 50
Chapter 7 Conclusion 53
Bibliography 55
dc.language.isoen
dc.subject活動非相關電器zh_TW
dc.subject節能服務zh_TW
dc.subject常識zh_TW
dc.subject詞頻-逆向文件頻 率zh_TW
dc.subject活動電器關聯模型zh_TW
dc.subjectcommonsenseen
dc.subjectTF-IDFen
dc.subjectactivity-appliance modelsen
dc.subjectirrelevant applianceen
dc.subjectenergy conservation serviceen
dc.title使用活動電器關聯模型偵測活動非相關電器zh_TW
dc.titleDetection of Irrelevant Appliance using
Activity-Appliance Models
en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊良(Jiann-Liang Chen),蔡宗翰(Tzong-Han Tsai),李育杰(Yuh-Jye Lee),梁敏雄(Min-Siong Liang)
dc.subject.keyword節能服務,活動非相關電器,活動電器關聯模型,詞頻-逆向文件頻 率,常識,zh_TW
dc.subject.keywordenergy conservation service,irrelevant appliance,activity-appliance models,TF-IDF,commonsense,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2010-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
888.44 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved