請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47091
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 梁庚辰 | |
dc.contributor.author | Hsin-Hua Tien | en |
dc.contributor.author | 田欣華 | zh_TW |
dc.date.accessioned | 2021-06-15T05:47:19Z | - |
dc.date.available | 2013-08-20 | |
dc.date.copyright | 2010-08-20 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-18 | |
dc.identifier.citation | Acri, J. B., Morse, D. E., Popke, E. J., & Grunberg, N. E. (1994). Nicotine
increases sensory gating measured as inhibition of the acoustic startle reflex in rats. Psychopharmacology, 114(2), 369-374. Akil, M., Pierri, J. N., Whitehead, R. E., Edgar, C. L., Mohila, C., Sampson, A. R., et al. (1999). Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. American Journal of Psychiatry, 156(10), 1580-1589. Bakshi, V. P., & Geyer, M. A. (1998). Multiple limbic regions mediate the disruption of prepulse inhibition produced in rats by the noncompetitive NMDA antagonist dizocilpine. Journal of Neuroscience, 18(20), 8394-8401. Bogerts, B., Ashtari, M., Degreef, G., Alvir, J. M., Bilder, R. M., & Lieberman, J. A. (1990). Reduced temporal limbic structure volumes on magnetic resonance images in first episode schizophrenia. Psychiatry Research, 35(1), 1-13. Boucher, A. A., Hunt, G. E., Karl, T., Micheau, J., McGregor, I. S., & Arnold, J. C. (2007). Heterozygous neuregulin 1 mice display greater baseline and Delta(9)-tetrahydrocannabinol-induced c-Fos expression. Neuroscience, 149(4), 861-870. Braff, D., Stone, C., Callaway, E., Geyer, M., Glick, I., & Bali, L. (1978). Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology, 15(4), 339-343. Braff, D. L., Geyer, M. A., Light, G. A., Sprock, J., Perry, W., Cadenhead, K. S., et al. (2001). Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophrenia Research, 49(1-2), 171-178. Braff, D. L., Swerdlow, N. R., & Geyer, M. A. (1999). Symptom correlates of prepulse inhibition deficits in male schizophrenic patients. American Journal of Psychiatry, 156(4), 596-602. Brody, S. A., & Geyer, M. A. (2004). Interactions of the mGluR5 gene with breeding and maternal factors on startle and prepulse inhibition in mice. Neurotoxiy Research, 6(1), 79-90. Carlsson, A. (1988). The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 1(3), 179-186. Chen, Y. J., Johnson, M. A., Lieberman, M. D., Goodchild, R. E., Schobel, S., Lewandowski, N., et al. (2008). Type III neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. Journal of Neuroscience, 28(27), 6872-6883. Chen, Y. W., Chen, D. Y., & Liang, K. C. (2007, November). Amygdala lesions impaired prepulse inhibition: Attenuation by typical and atypical neuroleptics infused into the ventricle and medial prefrontal cortex. Poster session presented at the annual meeting of the Society for Neuroscience, San Diego, CA. Chiang, Y. H., Cheng, S. J., Yang, F. C., Min, M. Y., Wen, C. C., Hwu, H. G., & Fu, W. M. (2009, Octorber). Role of schizophrenia-related gene of neuregulin 1 in fear memory and depression. Poster session presented at the annual meeting of the Society for Neuroscience, Chicago, IL. Chien, I. C., Chou, Y. J., Lin, C. H., Bih, S. H., Chou, P., & Chang, H. J. (2004). Prevalence and incidence of schizophrenia among national health insurance enrollees in Taiwan, 1996-2001. Psychiatry and Clinical Neuroscience, 58(6), 611-618. Davis, K. L., Kahn, R. S., Ko, G., & Davidson, M. (1991). Dopamine in schizophrenia: a review and reconceptualization. American Journal of Psychiatry, 148(11), 1474-1486. de Jong, I. E., & van den Buuse, M. (2006). SCH 23390 in the prefrontal cortex enhances the effect of apomorphine on prepulse inhibition of rats. Neuropharmacology, 51(3), 438-446. Duffy, L., Cappas, E., Scimone, A., Schofield, P. R., & Karl, T. (2008). Behavioral profile of a heterozygous mutant mouse model for EGF-like domain neuregulin 1. Behavioral Neuroscience, 122(4), 748-759. Duncan, G. E., Moy, S. S., Lieberman, J. A., & Koller, B. H. (2006). Effects of haloperidol, clozapine, and quetiapine on sensorimotor gating in a genetic model of reduced NMDA receptor function. Psychopharmacology, 184(2), 190-200. Ehrlichman, R. S., Luminais, S. N., White, S. L., Rudnick, N. D., Ma, N., Dow, H. C., et al. (2009). Neuregulin 1 transgenic mice display reduced mismatch negativity, contextual fear conditioning and social interactions. Brain Research, 1294, 116-127. Fendt, M., Schwienbacher, I., & Koch, M. (2000). Amygdaloid N-methyl-D-aspartate and gamma-aminobutyric acid(A) receptors regulate sensorimotor gating in a dopamine-dependent way in rats. Neuroscience, 98(1), 55-60. Geyer, M. A., Krebs-Thomson, K., Braff, D. L., & Swerdlow, N. R. (2001). Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology, 156(2-3), 117-154. Graham, F. (1975): The more or less startling effects of weak prestimuli. Psychophysiology 12:238–248 Gur, R. E., Turetsky, B. I., Cowell, P. E., Finkelman, C., Maany, V., Grossman, R. I., et al. (2000). Temporolimbic volume reductions in schizophrenia. Archives in General Psychiatry, 57(8), 769-775. Hahn, C. G., Wang, H. Y., Cho, D. S., Talbot, K., Gur, R. E., Berrettini, W. H., et al. (2006). Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nature Medicine, 12(7), 824-828. Harrison, P. J., & Law, A. J. (2006). Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biological Psychiatry, 60(2), 132-140. Harrison, P. J., & Weinberger, D. R. (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Molecular Psychiatry, 10(1), 40-68. Hofer, E., Doby, D., Anderer, P., & Dantendorfer, K. (2001). Impaired conditional discrimination learning in schizophrenia. Schizophrenia Research, 51(2-3), 127-136. Hoffman, D. C., & Donovan, H. (1994). D1 and D2 dopamine receptor antagonists reverse prepulse inhibition deficits in an animal model of schizophrenia. Psychopharmacology, 115(4), 447-453. Inglis, W. L., & Semba, K. (1997). Discriminable excitotoxic effects of ibotenic acid, AMPA, NMDA and quinolinic acid in the rat laterodorsal tegmental nucleus. Brain Research, 755(1), 17-27. Kahn, R. S., Harvey, P. D., Davidson, M., Keefe, R. S., Apter, S., Neale, J. M., et al. (1994). Neuropsychological correlates of central monoamine function in chronic schizophrenia: relationship between CSF metabolites and cognitive function. Schizophrenia Research, 11(3), 217-224. Kebabian, J. W., & Calne, D. B. (1979). Multiple receptors for dopamine. Nature, 277(5692), 93-96. Kiyokawa, Y., Takeuchi, Y., & Mori, Y. (2007). Two types of social buffering differentially mitigate conditioned fear responses. European Journal of Neuroscience, 26(12), 3606-3613. Knapska, E., Nikolaev, E., Boguszewski, P., Walasek, G., Blaszczyk, J., Kaczmarek, L., et al. (2006). Between-subject transfer of emotional information evokes specific pattern of amygdala activation. Progress in National Academic Science U S A, 103(10), 3858-3862. Koch, M., & Bubser, M. (1994). Deficient sensorimotor gating after 6-hydroxydopamine lesion of the rat medial prefrontal cortex is reversed by haloperidol. European Journal of Neuroscience, 6(12), 1837-1845. Koch, M., & Ebert, U. (1998). Deficient sensorimotor gating following seizures in amygdala-kindled rats. Biological Psychiatry, 44(4), 290-297. Kumari, V., & Postma, P. (2005). Nicotine use in schizophrenia: the self medication hypotheses. Neuroscience Biobehavioral Research, 29(6), 1021-1034. Kumari, V., Soni, W., & Sharma, T. (1999). Normalization of information processing deficits in schizophrenia with clozapine. American Journal of Psychiatry, 156(7), 1046-1051. Kuo, Y. M., Chen, H. H., Shieh, C. C., Chuang, K. P., Cherng, C. G., & Yu, L. (2003). 4-Hydroxytamoxifen attenuates methamphetamine-induced nigrostriatal dopaminergic toxicity in intact and gonadetomized mice. Journal of Neurochemistry, 87(6), 1436-1443. Lawrie, S. M., Whalley, H. C., Abukmeil, S. S., Kestelman, J. N., Donnelly, L., Miller, P., et al. (2001). Brain structure, genetic liability, and psychotic symptoms in subjects at high risk of developing schizophrenia. Biological Psychiatry, 49(10), 811-823. Levin, E. D., Bettegowda, C., Weaver, T., & Christopher, N. C. (1998). Nicotine-dizocilpine interactions and working and reference memory performance of rats in the radial-arm maze. Pharmacology, Biochemistry and Behavior, 61(3), 335-340. Lewis, D. A., & Gonzalez-Burgos, G. (2000). Intrinsic excitatory connections in the prefrontal cortex and the pathophysiology of schizophrenia. Brain Research Bulletin, 52(5), 309-317. Li, C. S., Chen, M. C., Yang, Y. Y., & Tsay, P. K. (2002). Altered performance of schizophrenia patients in an auditory detection and discrimination task: exploring the 'self-monitoring' model of hallucination. Schizophrenia Research, 55(1-2), 115-128. Lindvall, O., Bjorklund, A., & Skagerberg, G. (1984). Selective histochemical demonstration of dopamine terminal systems in rat di- and telencephalon: new evidence for dopaminergic innervation of hypothalamic neurosecretory nuclei. Brain Research, 306(1-2), 19-30. Lipska, B. K., & Weinberger, D. R. (2000). To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology, 23(3), 223-239. Liu, C. M., Hwu, H. G., Fann, C. S., Lin, C. Y., Liu, Y. L., Ou-Yang, W. C., et al. (2005). Linkage evidence of schizophrenia to loci near neuregulin 1 gene on chromosome 8p21 in Taiwanese families. American Journal of Medical Genetics and Neuropsychiatry Genetics, 134B(1), 79-83. Livingstone, P. D., Srinivasan, J., Kew, J. N., Dawson, L. A., Gotti, C., Moretti, M., et al. (2009). alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex. European Journal of Neuroscience, 29(3), 539-550. Mansbach, R. S., Geyer, M. A., & Braff, D. L. (1988). Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacology, 94(4), 507-514. Neddens, J., Vullhorst, D., Paredes, D., & Buonanno, A. (2009). Neuregulin links dopaminergic and glutamatergic neurotransmission to control hippocampal synaptic plasticity. Communication in Integrtion Biology, 2(3), 261-264. Nespor, A. A., & Tizabi, Y. (2008). Effects of nicotine on quinpirole- and dizocilpine (MK-801)-induced sensorimotor gating impairments in rats. Psychopharmacology, 200(3), 403-411. O'Tuathaigh, C. M., Babovic, D., O'Sullivan, G. J., Clifford, J. J., Tighe, O., Croke, D. T., et al. (2007). Phenotypic characterization of spatial cognition and social behavior in mice with 'knockout' of the schizophrenia risk gene neuregulin 1. Neuroscience, 147(1), 18-27. Ralph, R. J., & Caine, S. B. (2005). Dopamine D1 and D2 agonist effects on prepulse inhibition and locomotion: comparison of Sprague-Dawley rats to Swiss-Webster, 129X1/SvJ, C57BL/6J, and DBA/2J mice. Journal of Pharmacology and Experimental Therapeutics, 312(2), 733-741. Ralph-Williams, R. J., Lehmann-Masten, V., Otero-Corchon, V., Low, M. J., & Geyer, M. A. (2002). Differential effects of direct and indirect dopamine agonists on prepulse inhibition: a study in D1 and D2 receptor knock-out mice. Journal of Neuroscience, 22(21), 9604-9611. Seeman, M. V. (1996). The role of estrogen in schizophrenia. Journal of Psychiatry Neuroscience, 21(2), 123-127. Shayegan, D. K., & Stahl, S. M. (2005). Emotion processing, the amygdala, and outcome in schizophrenia. Progress in Neuropsychopharmacol Biological Psychiatry, 29(5), 840-845. Shoemaker, J. M., Saint Marie, R. L., Bongiovanni, M. J., Neary, A. C., Tochen, L. S., & Swerdlow, N. R. (2005). Prefrontal D1 and ventral hippocampal N-methyl-D-aspartate regulation of startle gating in rats. Neuroscience, 135(2), 385-394. Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., et al. (2002). Neuregulin 1 and susceptibility to schizophrenia. American Journal of Human Genetics, 71(4), 877-892. Suemaru, K., Yasuda, K., Umeda, K., Araki, H., Shibata, K., Choshi, T., et al. (2004). Nicotine blocks apomorphine-induced disruption of prepulse inhibition of the acoustic startle in rats: possible involvement of central nicotinic alpha7 receptors. British Journal of Pharmacology, 142(5), 843-850. Swerdlow, N. R., Caine, S. B., & Geyer, M. A. (1992). Regionally selective effects of intracerebral dopamine infusion on sensorimotor gating of the startle reflex in rats. Psychopharmacology, 108(1-2), 189-195. Swerdlow, N. R., & Geyer, M. A. (1993). Clozapine and haloperidol in an animal model of sensorimotor gating deficits in schizophrenia. Pharmacology, Biochemistry and Behavior, 44(3), 741-744. Swerdlow, N. R., Keith, V. A., Braff, D. L., & Geyer, M. A. (1991). Effects of spiperone, raclopride, SCH 23390 and clozapine on apomorphine inhibition of sensorimotor gating of the startle response in the rat. Journal of Pharmacology and Experimental Therapeutics, 256(2), 530-536. Swerdlow, N. R., Shoemaker, J. M., Kuczenski, R., Bongiovanni, M. J., Neary, A. C., Tochen, L. S., et al. (2006). Forebrain D1 function and sensorimotor gating in rats: effects of D1 blockade, frontal lesions and dopamine denervation. Neuroscience Letters, 402(1-2), 40-45. van den Buuse, M., Wischhof, L., Lee, R. X., Martin, S., & Karl, T. (2009). Neuregulin 1 hypomorphic mutant mice: enhanced baseline locomotor activity but normal psychotropic drug-induced hyperlocomotion and prepulse inhibition regulation. International Journal of Neuropsychopharmacol, 12(10), 1383-1393. Wan, F. J., & Swerdlow, N. R. (1993). Intra-accumbens infusion of quinpirole impairs sensorimotor gating of acoustic startle in rats. Psychopharmacology, 113(1), 103-109. Wan, F. J., & Swerdlow, N. R. (1997). The basolateral amygdala regulates sensorimotor gating of acoustic startle in the rat. Neuroscience, 76(3), 715-724. Wan, F. J., Taaid, N., & Swerdlow, N. R. (1996). Do D1/D2 interactions regulate prepulse inhibition in rats? Neuropsychopharmacology, 14(4), 265-274. Weller, A., Leguisamo, A. C., Towns, L., Ramboz, S., Bagiella, E., Hofer, M., et al. (2003). Maternal effects in infant and adult phenotypes of 5HT1A and5HT1B receptor knockout mice. Developmental Psychobiology, 42(2), 194-205. Williams, N. M., Preece, A., Spurlock, G., Norton, N., Williams, H. J., Zammit, S., et al. (2003). Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Molecular Psychiatry, 8(5), 485-487. Woznica, A. A., Sacco, K. A., & George, T. P. (2009). Prepulse inhibition deficits in schizophrenia are modified by smoking status. Schizophrenia Research, 112(1-3), 86-90. Yee, B. K., Chang, T., Pietropaolo, S., & Feldon, J. (2005). The expression of prepulse inhibition of the acoustic startle reflex as a function of three pulse stimulus intensities, three prepulse stimulus intensities, and three levels of startle responsiveness in C57BL6/J mice. Behavioral Brain Research, 163(2), 265-276. Zavitsanou, K., Cranney, J., & Richardson, R. (1999). Dopamine antagonists in the orbital prefrontal cortex reduce prepulse inhibition of the acoustic startle reflex in the rat. Pharmacology, Biochemistry and Behavior, 63(1), 55-61. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47091 | - |
dc.description.abstract | Neuregulin1 (Nrg 1)是精神分裂症的可能致病基因之一,因此Nrg 1基因剔除鼠常被
用來當作研究精神分裂症的動物模型 。先前研究指出Nrg 1基因剔除鼠杏仁核有萎縮及活動異常的情況 。本研究企圖釐清Nrg 1基因缺陷與杏仁核功能異常間的關係是否與小鼠上類精神分裂症的行為表現型相關。首先,我們採用一連串的行為作業來檢驗Nrg 1基因剔除鼠是否有類精神分裂症的行為表現型,結果指出Nrg 1基因剔除鼠的前顫制、嫌惡學習、區辨能力以及基礎活動力皆有異常,而給予典型抗精神分裂症藥物(haloperidol)皆能減緩Nrg 1基因剔除鼠前顫抑制異常的程度。此外,公鼠與母鼠在為表現上有明顯的性別差異,公鼠較易受到Nrg 1基因缺損的影響產生行為上的缺陷,且 對於藥物治療的反應較差。為了進一步釐清杏仁核異常在其中所扮演的角色,我們以C57/B6小鼠作為受試者並毀除其腹側杏仁核,探討腹側杏仁核受損對前顫抑制表現的影響及抗精神分裂症藥物的治療效果。結果發現毀除腹側杏仁核會使動物前顫抑制表現變差,而於前額葉皮質內注射D1受體的共同致效劑(SKF38393)或D2受體的拮抗劑(haloperidol)皆能使顫抑制能力恢復正常。本研究證實Nrg 1基因受損及毀除腹杏 仁核皆會損害前顫抑制的表現,而於週邊或前額葉皮質給予haloperidol皆能舒緩動異 常的行為表現。綜合以上發現,我們認為精神分裂症的可能致病基因Nrg 1對動物的行為表現所造成的影響可能是透過杏仁核的作用。 | zh_TW |
dc.description.abstract | Neuregulin1 (Nrg 1) is a candidate gene identified for schizophrenia. Transgenic and knock-out Nrg1 mutant mice are widely adopted as an animal model for studying schizophrenia. Previous results revealed that Nrg1 heterozygous mutants showed impaired amygdala functioning. This thesis aimed to pursue a potential link between the deletion of Nrg 1 and amygdala malfunctioning in schizophrenia-related behavior. Nrg1 knock-out and wild-type mice were tested on a series of behavioral tasks for assessment of behavior implicated in schizophrenia symptoms. It was shown that Nrg 1 heterozygous mutants exhibited deficits in sensorimotor gating, conditioned fear potentiation of startle, auditory discrimination and locomotion activity. Acute challenge with a typical antipsychotic haloperidol attenuated the prepulse inhibition deficit in Nrg 1 mutants, and this effect was partially mimicked by nicotine. Sexual dimorphism was apparent in behavioral impairment or in the effect of haloperidol treatment, with the male more vulnerable to debilitative influences but less susceptible to remedy. To explore the role of amygdala in such deficits, lesions of the basolateral amygdala were made on the naive C57/B6 mice, performance in prepulse inhibition and effects of antipsychotics were tested on this model. It was found that male mice with lesions of the basolateral amygdala exhibited the same deficit in prepulse inhibition; microinfusion of the D2 receptor antagonist haloperidol into medial prefrontal cortex (mPFC) of these mice reversed the prepulse inhibition deficit and so did the D1 receptor agonist SKF38393. These findings suggest that deletion of Nrg 1 and lesions of the basolateral amygdala caused parallel deficits in prepulse inhibition. Both deficits could be ameliorated by peripheral or intra-medial prefrontal administration of haloperidol. These findings raise a hypothesis that the schizophrenia candidate gene Nrg 1 may exert its effect on behavior through an amygdala-related mechanism. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:47:19Z (GMT). No. of bitstreams: 1 ntu-99-R96227105-1.pdf: 2812145 bytes, checksum: 844e509e86227e7256eb9074f328b8de (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 中文摘要………………………………………………………………………………….. i
Abstract ……………………………………………………………………………….... ii Introdution …………………………………………………………………………….. 1 Schizophrenia ……………………………………………………………………….… 1 Animal models of schizophrenia …………………………………………………. 3 Association between the neuregulin 1 gene and schizophrenia …………... 6 Neuregulin 1 heterozygous mutants as an animal model of schizophrenia-related phenotypes ……………………………………………………………..……..9 Amygdala abnormality in patients with schizophrenia and neuregulin 1 mutants mice …………………….…………………………………………………….12 Prepuse inhibition as the prominent behavioral phenotype in animal models of schizophrenia ……………………………………………………….…………….. 15 The role of amygdala in the regulation of prepulse inhibition…...….……...18 Alleviation of schizophrenia symptoms by nicotine in patients………..…… 20 The goals and strategies of this study………………………………………… ….21 Material and Methods …………………………………………………………………27 Subjects ………………………………………………………………………………....27 Drugs …………………………………………………………………………………….28 Surgery ……………………………………………………………………………….....29 Drug infusion ……………………………………………………………………….... 30 Prepulse inhibition …………………………………………………………………….31 Inhibitory Avoidance……………………………………………………………........33 Conditioned-Fear potentiation of startle ……….……………………….……….34 Conditioned tone discrimination task .…………………………………………...36 Two-way active avoidance …………………………………………………………..36 Shock startle and acoustic startle task ………………………………………….…38 Open field task ……………………………………………………………………..… 39 Statistical analysis ………………………………………………………………...…. 39 Histology ………………………………………………………………………………. 40 Results…………………………………………………………………………………....41 Effects of neuregulin 1 deletion on the inhibitory avoidance task ………… 42 Effects of neuregulin 1 deletion on two-way active avoidance task ………. 43 Effect of neuregulin 1 deletion on locomotor activity ………………………….46 Effects of neuregulin 1 deletion on conditioned fear potentiation of startle..48 Effects of neuregulin 1 deletion on conditioned freezing and auditory discrimination ………………………………………………………………………......54 Effects of neuregulin 1 deletion on sensitivity to shock or auditory stimuli and startle reactivity……………………………………………………………....……56 Effect of neuregulin 1 deletion on sensorimotor gating …………….…………59 Treating the disrupted prepulse inhibition by nicotine and/or haloperidol in the neuregulin1 transgenic mice …...…………….....………….63 The disruption of prepulse inhibition by basolateral amygdala lesions in the wild-type controls …………………………………………………………..…66 Manipulation of dopamine transmission in the medial prefrontal cortex altered the disruptive effect of basolateral amygdala lesions on prepulse inhibition in wild-type controls ……………………………………………………..68 Discussion ………………………………..…………………………………………….. 73 Methodological considerations ………………………………………………………75 The role of dopamine and nicotine in the regulation of prepulse inhibition …..........................................................................................................…..85 The relationship between neuregulin 1 gene and amygdala …………………..94 Figure ………………………..…………………………………………………………….99 Reference …………………………………………………………………………………123 | |
dc.language.iso | en | |
dc.title | 從基因模型及腦部毀除模型探討小鼠上類精神分裂症的行為表現型:
Neuregulin 1 與杏仁核所扮演的角色 | zh_TW |
dc.title | Exploring schizophrenia‐related phenotypes in a genetic model and a brain‐lesioned model in mice: The Role of Neuregulin 1 and Amygdala | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 廖瑞銘,賴文崧,徐嘉宏,劉怡均 | |
dc.subject.keyword | 前顫抑制,嫌惡學習,多巴胺,動物模型,以䤈,膽鹼, | zh_TW |
dc.subject.keyword | prepulse inhibition,aversive learning,dopamine,animal model,acetylcholine, | en |
dc.relation.page | 130 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-19 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 心理學研究所 | zh_TW |
顯示於系所單位: | 心理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 2.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。