請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47080
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳信希 | |
dc.contributor.author | Chang-Ye Lee | en |
dc.contributor.author | 李長曄 | zh_TW |
dc.date.accessioned | 2021-06-15T05:47:02Z | - |
dc.date.available | 2012-08-20 | |
dc.date.copyright | 2010-08-20 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-18 | |
dc.identifier.citation | [1] Akshay Java, Xiaodan Song, Tim Finin and Belle Tseng. (2007). ”Why We Twitter: Understanding Micorblogging Usage and Communities.” Proceedings of the Joint 9th WEBKDD and 1st SNA-KDD Workshop 2007.
[2] Bernard J.Jansen, Mimi Zhang, Kate Sobel and Abdur Chowdury. (2009). ”Micro-blogging as Online Word of Mouth Branding.” Proceedings of the 27th international conference extended abstracts on Human factors in computing systems, 3859-3864. [3] Poornima Hanumara and Lorcan Coyle. (2008). “Connecting Families by Sharing the Minutiae of their Lives.” Technical Report from UCD school of Computer Science and Informatics. [4] Carsten Ullrich, Kerstin Borau, Heng Luo, Xiaohong Tan, Liping Shen and Ruimin Shen. “Why Web 2.0 is Good for Learning and for Research: Principles and Prototypes.” Proceeding of the 17th international conference on World Wide Web, 705-714. [5] Ioannis Konstas, Vassilios Stathopoulos and Joemon M Jose. (2009). “On Social Networks and Collaborative Recommendation.” Proceedings of the 32nd Annual ACM SIGIR Conference. [6] Wei Chu and Seung-Taek Park. (2009). ”Personalized Recommendation on Dynamic Content Using Predictive Bilinear Models.” Proceedings of the 18th international conference on World Wide Web, 691-700. [7] Jilin Chen, Werner Geyer, Casey Dugan, Michael Muller and Ido Guy. (2009). “’Make New Friends, but Keep the Old’-Recommending People on Social Networking Sites.” Proceedings of the 27th international conference on Human factors in computing systems. 201-210. [8] Mark S. Granovetter (1973). “The Strength of Weak Ties.” The American Journal of Sociology, 78(6), 1360-1380. [9] Isabelle Guyon and Andre Elisseeff (2003). “An introduction to variable and feature selection.” The Journal of Machine Learning Research, Pages: 1157 – 1182 [10] Scott A.Golder, Sarita Yardi, Alice Marwick and danah boyd. (2009). ”A Structure Approach to Contact Recommendations in Online Social Networks” Workshop on Search in Social Media. [11] Ece Aksu Degirmencioglu, Suzan Uskudarli. (2010). “Exploring Area-Specific Microblogging Social Networks” Proceedings of the WebSci10: Extending the Frontiers of Society On-Line. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47080 | - |
dc.description.abstract | 自2009年起,台灣吹起一陣微網誌風潮,數以萬計的人加入噗浪,並在上面交友、分享資訊及閒聊八卦。噗浪儼然成為一個資訊流通的高速公路。一件大眾有興趣的事情,可以在一天內流傳到全台灣。例如戴爾公司於2009年6月發生網站標錯商品價格的事件,噗浪就扮演一個推波助瀾的角色,將資訊快速傳播到所有人手上。
對台灣組織來說,噗浪是一個達成組織目的之前哨站。防禦方面,可以快速偵測緊急突發狀況,以期有更多時間處理。主動方面,可以在噗浪認識更多的客戶或朋友,並且藉由互動獲得第一手即時資訊。 本論文首先對噗浪做特性分析,著重在情感、語言類別、和即時性主題上。接著建造一組個人化組織推薦系統,依照每一個組織的特性,抽取合適於組織的特徵,並且將這些特徵回饋給組織當作推薦的理由,來輔助組織做出交友決策。此外,也提出一個組織社群的概念,讓實作此系統時,不需擁有整個噗浪使用者的資料,只需要組織社群範圍的使用者資料就可以開始運作,而組織社群限制還可以提升推薦效能。 本論文使用特徵選擇機制,對每家組織選擇個人化組織特徵,並且使用支持向量機(Support Vector Machine)做訓練和預測,並由不同角度對推薦效能進行分析比較,例如特徵選擇機制是否有效能變化、考慮機器人服務對推薦的影響、以及組織社群效應等。最後提出一些議題供未來研究,包含推薦理由的設定和推薦系統即時化。 | zh_TW |
dc.description.abstract | Microblog becomes popular in Taiwan from 2009. There are tens of thousands of users to join plurk. They make friends, share information and gossip with one another in plurk. Plurk which can be regarded as an information highway can rapidly spread news. For example, Dell marks the wrong price to products in official homepage in June 2009 and plurk plays an important role in information dissemination.
For organizations in Taiwan, plurk is an outpost to achieve organizational purposes. In one way, plurk can detect and deal with emergency events quickly and unhurriedly. In another way, organizations can know more customers and friends, and obtain the first-hand real-time information by interaction with them. This thesis analyzes properties in plurk at first including emotional topic, linguistic topic and real-time property. Then it builds a personalized friend recommendation system which selects suitable features for each organization and those features will form recommendation reasons to support making friends. Besides, this thesis also presents a concept of organization community. That can make the implementation feasible for each organization. This thesis proposes a feature selection mechanism to select the customized features and uses Support Vector Machine (SVM) to train and predict data. Furthermore, this thesis makes experiments to discuss the influences of feature selection, robot services, and community in recommendation. Finally this thesis provides some issues for future works such as recommendation reasons and real-time recommendation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:47:02Z (GMT). No. of bitstreams: 1 ntu-99-R97944034-1.pdf: 3287163 bytes, checksum: 073552b1d340f76f9dc861efb0bef67f (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 摘要 ii Abstract iii 目錄 iv 附圖目錄 vii 附表目錄 ix 第一章 緒論 1 1.1研究動機 1 1.2 微網誌發展歷程 2 1.2.1 微網誌平台介紹 2 1.2.2 微網誌特性 2 1.2.3 部落格和微網誌的比較 3 1.3 微網誌相關研究 4 1.3.1 微網誌特徵研究 4 1.3.2 微網誌應用研究 5 1.3.3 社群網絡關係研究 6 1.3.4 朋友推薦系統研究 6 1.4 論文架構 8 第二章 噗浪研究 9 2.1 微網誌平台-噗浪 9 2.1.1 噗浪介紹 9 2.1.2 噗浪機器人介紹 13 2.2 語文分類分析 13 2.3 情感分析 20 2.4 即時性特徵分析 24 第三章 系統實作 30 3.1 資料集介紹 30 3.2 系統介紹 32 3.2.1 整體概論 32 3.2.2 抓爬器 33 3.2.3 字典擴充 34 3.2.4 使用集 36 3.2.5 特徵抽取 36 3.2.6 特徵排序 36 3.2.7 特徵遴選及特徵集 37 3.2.8 網格搜尋及支持向量機模型產生 38 3.2.9 測試評估過程 38 3.3 特徵集 39 3.3.1 年紀和性別特徵 39 3.3.2 地區特徵 39 3.3.3 文字特徵 39 3.3.4 連結特徵 43 3.3.5 時間相關性 44 第四章 實驗 4.1 測試資料集 45 4.2 效能評估方式 46 4.3 議題討論 46 4.3.1 特徵選擇的影響 46 4.3.2 服務性機器人的影響 53 4.3.3 組織社群的影響 54 4.3.4 時間序列的影響 58 4.3.5 實驗結果和討論 61 第五章 結論和未來發展 66 5.1 結論 66 5.2 未來發展 66 參考文獻 68 附錄一 70 附錄二 72 | |
dc.language.iso | zh-TW | |
dc.title | 微網誌平台下推薦朋友予組織之研究 | zh_TW |
dc.title | The Study of Recommending Friends to Organizations in Microblog Platform | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭卜壬,盧文祥 | |
dc.subject.keyword | 微網誌,支持向量機,特徵遴選,噗浪,推薦朋友, | zh_TW |
dc.subject.keyword | microblog,SVM,feature selection,plurk,recommend friend, | en |
dc.relation.page | 76 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-19 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 3.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。