請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47076完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
| dc.contributor.author | Kuan-Lin Huang | en |
| dc.contributor.author | 黃冠霖 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:46:55Z | - |
| dc.date.available | 2013-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-18 | |
| dc.identifier.citation | [1] S. Devasia, E. Eleftheriou, and S. O. R. Moheimani, “A survey of control issues in nanopositioning,” IEEE Transactions on Control Systems Technology, vol. 15, no. 5, pp. 802–823, September 2007.
[2] L. Bartels, G. Meyer, and K.-H. Rieder, “Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip,” Phys. Rev. Lett., vol. 79, no. 4, pp. 697–700, July 1997. [3] D. Y. Abramovitch, S. B. Andersson, L. Y. Pao, and G. Schitter, “A tutorial on the mechanisms, dynamics, and control of atomic force microscopes,” American Control Conference, pp. 3488–3502, AACC, IEEE, 2007. [4] I. Schmitz, M. Schreiner, G. Friedbacher, and M. Grasserbauer, “Phase imaging as an extension to tapping mode AFM for the identification of material properties on humidity-sensitive surfaces,” Appl. Surface Sci., vol. 115, no. 2, pp. 190–198, Jun. 1997 [5] L. R. Harriot, “Limits of lithography,” Proc. IEEE, vol. 89, no. 3, pp.366–374, Mar. 2001. [6] D. L. White and O. R. Wood, “Novel alignment system for imprint lithography,” J. Vacuum Sci. Technol., vol. 18, no. 6, pp. 3552–3556, 2000. [7] Z. Rihong, X. Daocai, Y. Zhixing, and C. Jinbang, “Research on systems for measurements of CCD parameters,” in Proc. SPIE Detectors, Focal Plane Arrays, Imaging Devices II, 1998, pp. 297–301. [8] M. Jianxu and M. H. Ang, Jr., “High-bandwidth macro/microactuation for hard disk drive,”in Proc. SPIE, Microrobot. Microassembly II, 2000, pp. 94–102. [9] X. Tan and J. S. Baras, “Modeling and control of a magnetostrictive actuator,” in Proc. 41st IEEE Conf. Dec. Control, 2002, pp. 866–872. [10] S. Ximin, K. Shih-Kang, Z. Jihua, and M. Chia-Hsiang, 'Ultra precision motion control of a multiple degrees of freedom magnetic suspension stage,' Mechatronics, IEEE/ASME Transactions on, vol. 7, pp. 67-78, 2002 [11] S. Salapaka, “Control of the Nanopositioning Devices,” in Proc. of Conference on Decision and Control, 2003. [12] K.-B. Choi and C. S. Han,“Optimal design of a compliant mechanism with circular notchflexure hinges,” Journal of Mechanical Engineering and Science, 221:385–392, 2007. [13] Y. K. Yong, S. Aphale, and S. O. R. Moheimani, “Design, identification, and control of a flexure-based xy stage for fast nanoscale positioning,” Nanotechnology, IEEE Transactions on, vol. 8, no. 1, pp. 46 – 54, 2009. [14] K. K. Leang and A. J. Fleming, “High-speed serial-kinematic AFM scanner: design and drive considerations,” Asian Journal of Control, vol. 11, no. 2, pp. 144–153, March 2009. [15] D. Kim, D. Kang, J. Shim, I. Song, and D. Gweon, “Optimal design of a flexure hinge-basedXYZatomic force microscopy scanner for minimizing abbe errors,” Rev. Sci. Instrum., vol. 76, pp. 073706-1–073706-7, 2005. [16] Y.Sang-Joon, P.Jae-Yong, L.Won-Gu,H.Seog-Young,Y. Byung-Joo, “Study on a spatial 3-degree-of-freedom micromanipulator employing displacement magnifying four-revolute-flexure hinges,” Journal of the Korean Physical Society, vol. 51, no. 4,pp. 1419-1426, 2007. [17] S. Awtar, “Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms,” Ph. D. Dissertation, Dept. Mech. Eng., Massachusetts Institute of Technology, Cambridge, MA, Feb. 2004. [18] Q. Yao, J. Dong and P.M. Ferreira, Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage, International Journal of Machine Tools and Manufacture,vol.47, no. 6, pp. 946–961, 2007. [19] Y. Li and Q. Xu, “Design of a new decoupled XY flexure parallel kinematicmanipulator with actuator isolation,” in Proc. IEEE/RSJ Int. Conf. Intell.Robots Syst., Nice, France, Sep. 22–26, pp. 470–475, 2008. [20] Products P-780, Physik Instrumente Product Catalog, 2005. [21] Verma S, Shakir H, Kim WJ, “Novel electromagnetic actuation scheme for multi-axis nanopositioning,” IEEE Trans Magnetics, vol.42, no.8, pp. 2052–2062, 2007. [22] T.J. Teo, I-M. Chen, G.L. Yang and W. Lin, A flexure-based electromagnetic linear actuator, Nanotechnology, vol. 19, no. 31, 2008. [23] Yang J. P., Deng X. C. and Chong T. C., “An electro-thermal bimorph-based microactuator for precise track-positioning of optical disk drives,” Journal of Micromechanics and Microengineering,vol. 15, no. 5, pp. 958–965, 2005 [24] Peng B., Zhu Y., Petrov I., Espinosa, H.D., “A Microelectromechanical System for Nano-Scale Testing of One Dimensional Nanostructures,” Sensor Letters, vol. 6, no. 1, pp. 76-87, 2008. [25] G. Bosch and E. Potulski, 'Measurement of the refractive index of air and comparison with modified Edlin's formulae,' Metrologia, vol. 35, p. 133, 1998. [26] H. A. Sodano and J. S. Bae, “Eddy Current Damping in Structures,” The Shock and Vibration Digest, Vol. 36, No. 6, pp. 469–478, Nov. 2004. [27] J. -S. Bae, M. K. Kwak, D. J. Inman, “Vibration suppression of a cantilever beam using eddy current damper,” Journal of Sound and Vibration, vol. 284, pp. 805-824, June 2005. [28] R. C. Hibbeler, “Mechanics of Materials,” Fourth edition, Prentice Hall, 2000. [29] S.C. Mukhopadhyay, J. Donaldson, G. Sengupta, S. Yamada, C. Chakraborty and D. Kacprzak, “Fabrication of a repulsive-type magnetic bearing using a novel arrangement of permanent magnets for vertical-rotor suspension,” IEEE Trans. Magn., vol. 39, no.5, 2003. [30] Products P-280 and P-762, Physik Instrumente Product Catalog , MicroPostioning, NanaoPositioning, NanoAutomation: Solutions for Cutting-Edge Technologies, 2001 [31] N. G. Dagalakis, J. A. Kramer, E. Amatucci, R. Bunch, “Kinematic Modelling and Analysis of Planer Micro-positioner”, in Proceedings of ASPE Annual Meeting, pp 135-138, 2001 [32] A. R Smith., S. Gwo, and C. K. Shih, “A new high resolution two-dimensional micropositioning device for scanning probe microscopy”, Review of Scientific Instruments, Vol. 64, no. 10, pp 3216-3219, 1994 [33] D. Guang-Ren and D. Howe, 'Robust magnetic bearing control via eigenstructure assignment dynamical compensation,' IEEE Transactions on Control Systems Technology, vol. 11, pp. 204-215, 2003 [34] S. Peng and S. Shyh-Pyng, 'Robust H∞ control for linear discrete-time systems with norm-bounded nonlinear uncertainties,' IEEE Transactions on Automatic Control, vol. 44, pp. 108-111, 1999. [35] K. Oui-Serg, L. Sang-Ho, and H. Dong-Chul, 'Positioning performance and straightness error compensation of the magnetic levitation stage supported by the linear magnetic bearing,' IEEE Transactions on Industrial Electronics, vol. 50, pp. 374-378, 2003. [36] X. Yuanqing and J. Yingmin, 'Robust sliding-mode control for uncertain time-delay systems: an LMI approach,' Automatic Control, IEEE Transactions on, vol. 48, pp. 1086-1091, 2003. [37] H. Sung-Kyung and R. Langari, 'Robust fuzzy control of a magnetic bearing system subject to harmonic disturbances,' IEEE Transactions on Control Systems Technology, vol. 8, pp. 366-371, 2000. [38] K. Ki-Seok and K. Youdan, 'Robust backstepping control for slew maneuver using nonlinear tracking function,' IEEE Transactions on Control Systems Technology, vol. 11, pp. 822-829, 2003. [39] D. D. Siljak, Decentralized Control of Complex Systems. New York: Academic, 1991. [40] Z. P. Jiang, “Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback,” IEEE Trans. Automat. Contr., vol. 45, pp. 2122–2128, Nov. 2000. [41] H. Cui and E. W. Jacobsen., “Performance limitations in decentralized control,” Journal of Process Control, vol. 12, no. 4, pp. 485-494, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47076 | - |
| dc.description.abstract | 本論文研究之目的是設計並實現一新型三自由度的定位平臺,此平台具備數十奈米的定位解析度與釐米等級的長行程工作範圍。平台採用一串聯式撓性結構做為導引機構,運動的產生來自撓性臂本身的彈性變形。透過五組電線圈與永久磁鐵的配置組合,水平與鉛直致動器能夠分別針對x、y與z軸向的運動加以控制。此外,為了改善系統的暫態響應與減輕撓性結構天生的共振劣勢,亦提出了以渦電流效應提高系統阻尼的電磁式阻尼器,達到被動與非接觸式的震動抑制。為了實現精確的回授運動控制,在本研究採用雷射干涉儀量測系統做為感測器,以提升平台的定位解析度。
為了要在系統參數變化與外在擾動干擾下達到系統穩定與強健性的目標,本論文提出一個分配式適應性滑動模式控制器,克服在系統參數變化以及外在干擾之不確定因素下,能順利達成系統之控制目標。最後,在經由一連串令人滿意的模擬與實驗結果中,可以證實本論文所設計之定位平臺可以達到長行程、高定位解析度以及快速反應之目標。 | zh_TW |
| dc.description.abstract | In this thesis, we present the novel design, control and implementation of a three degree-of-freedom (DOF) compact positioner with high resolution in tens of nanometer-scale precision positioning capacity and millimeter-level long travel range. According to the serial flexure mechanism design, whose motion comes from the elastic deformation of the flexure and the force allocation of five pairs of electromagnetic coils and permanent magnets, the precision positioner enables both horizontal and vertical actuations resulting in x-, y-, and z- motions respectively. Next, in order to improve the transient response and to suppress the vibration of the flexure suspension mechanism, an eddy current damper (ECD) is also applied as passive and noncontact resistance of vibration. In order to realize accurate feedback control, a laser interferometer sensing system is implemented to improve the positioning resolution of the stage.
For maintaining stability and robustness of the precision system, we implement a decentralized adaptive sliding mode controller (DASMC) overcoming the overall situations of unmodeled system dynamics and external noises. Finally, from the simulation and experimental results, satisfactory performance has been observed, which means that the designated objectives of this research have been successfully attained, namely, (1) long travel range (2) high positioning resolution and (3) fast response. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:46:55Z (GMT). No. of bitstreams: 1 ntu-99-R97921004-1.pdf: 5372693 bytes, checksum: 9fc73243235c10a9df4d43c0b2cfc093 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書
摘要 i ABSTRACT ii CONTENTS v List of Figures ix List of Tables xiv Chapter 1 Introduction 1 1.1Motivation 1 1.2 Survey on the Nanopositioning System 3 1.2.1 Compliant mechanism for precision positioning device 4 1.2.2 Actuators in the nanopositioning system 10 1.2.3 Sensors in the nanopositioning system 14 1.3 Contribution 15 1.4 Organization 16 Chapter 2 Preliminary 18 2.1 Basic Theories of Electromagnetic 18 2.1.1 Lorentz force principle 18 2.1.2 Magnetic force resulting from a cylindrical electromagnet 20 2.1.3 Eddy current phenomenon 23 2.2 Properties of Permanent Magnet 25 2.3 Basic Theories of Energy Methods 30 2.3.1 External work and strain energy 30 2.3.2 Strain energy for bending moment 32 2.3.3 Castigiano’s theorem 33 2.4 Flexure Mechanism 34 2.5Sensing Metrology 40 2.5.1 Interference phenomenon 40 2.5.2 Abbe principle and Abbe error 42 2.5.3 Cosine error 42 Chapter 3 Mechatronic Design 44 3.1 Design Strategies 44 3.1.1 High positioning resolution 45 3.1.2 Long range of motion 46 3.1.3 Fast positioning 47 3.1.4 Compact system 47 3.2 Electromagnetic Actuation and Damper 48 3.2.1 Voice Coil Motor 48 3.2.2 Repulsive Electromagnetic Actuator 51 3.2.3 Eddy current damper 53 3.3 XYZ-Dim Flexure Mechanism 54 3.4 Measurement System 57 3.5 Integrated 3-DOF Positioning Stage 59 Chapter 4 System Modeling and Identification 62 4.1 Force Characteristics of the Electromagnetic Actuator 63 4.2 Force Allocation 70 4.3 Dynamics Formulation 71 4.4 System Identification 74 Chapter 5 Controller Design 80 5.1 Decentralized Adaptive Sliding Mode Controller Design 81 5.1.1 Sliding surface 84 5.1.2 Adaptive sliding mode control law 85 5.1.3 Stability analysis 86 5.2 Numerical Simulation Results 91 Chapter 6 Experimental Results 94 6.1 Hardware Setup 94 6.2 Experimental Results and Discussions 99 6.2.1 Vibration suppression test 99 6.2.2 Step and regulation response 101 6.2.3 Sinusoidal tracking response 105 6.2.4 Circular contouring 107 6.2.5 Helix motion 108 Chapter 7 Concolusions 110 Reference 112 | |
| dc.language.iso | en | |
| dc.subject | 分配適應性滑動模式控制 | zh_TW |
| dc.subject | 精密運動控制 | zh_TW |
| dc.subject | 結構減震 | zh_TW |
| dc.subject | 串聯式撓性機構 | zh_TW |
| dc.subject | 電磁制動器 | zh_TW |
| dc.subject | 渦電流阻尼器 | zh_TW |
| dc.subject | Precision motion control | en |
| dc.subject | Decentralized Adaptive sliding mode control | en |
| dc.subject | Eddy current damper | en |
| dc.subject | Electromagnetic actuation | en |
| dc.subject | Serial flexure mechanism | en |
| dc.subject | Vibration suppression | en |
| dc.title | 以撓摺機構設計並實現之新型三自由度精密電磁致動平台 | zh_TW |
| dc.title | Design and Implementation of a New Three-DOF Electromagnetically Actuated Precision Positioning Stage with Flexure Mechanism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳美勇(Mei-Yung Chen) | |
| dc.contributor.oralexamcommittee | 顏家鈺(Jia-Yush Yen),陳永耀,蔡坤諭 | |
| dc.subject.keyword | 精密運動控制,結構減震,串聯式撓性機構,電磁制動器,渦電流阻尼器,分配適應性滑動模式控制, | zh_TW |
| dc.subject.keyword | Precision motion control,Vibration suppression,Serial flexure mechanism,Electromagnetic actuation,Eddy current damper,Decentralized Adaptive sliding mode control, | en |
| dc.relation.page | 117 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 5.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
