Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47069
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳奕君(I-Chun Cheng)
dc.contributor.authorChu-Te Chien
dc.contributor.author戚居德zh_TW
dc.date.accessioned2021-06-15T05:46:44Z-
dc.date.available2013-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citation1.2 第一章參考文獻
[1] Y. Nakamura, Y. Yoshida, Y. Honaga, S. Fujitsu, Journal of the European Ceramic
Society, 25 (2005) 2167
[2] H. Kawazoe, Transparent p-Type Conducting Oxides: Design and Fabrication
of p-n Heterojunction, MRS Bulletin, (2000) 28
[3] H. Sato, T. Minami, S. Takata and T. Yamada, Thin Solid Films, 236 (1993) 27
[4] J. C. Sun, J. Z. Zhao, H. W. Liang, J. M. Bian, L. Z. Hu, H. Q. Zhang, X. P. Liang, W. F. Liu, and G. T. Du, Applied Physics Letters, 90 (2007) 121128 2007
第二章參考文獻
[1] H. Sato, T. Minami, S. Takata and T. Yamada, Thin Solid Films, 236 (1993) 27
[2] W. Xu, Z. Ye, T. Zhou, B. Zhao, L. Zhu, J. Huang, Journal of Crystal Growth 265
(2004) 133
[3] H. Kawazoe et al,Transparent p-Type Conducting Oxides: Design and Fabrication
of p-n Heterojunction, MRS Bulletin ,August 28 (2000)
[4] R. Ondo-Ndong, F. Pascal-Delannoy, Material Science and Engineering,
B97(2003)68
[5] 林素霞,“氧化鋅薄膜的特性改良及應用之研究”, 國立成功大學材料科學及工研究所博士論文, 2003
[6] Y. Igasaki, H. Saito, Thin Solid Films 199 (1991) 223
[7] D. F. Paraguay, L. W. Estrada, N. D. R. Acosta, E. Andrade, M. Miki
-Yoshida, Thin Solid Films, 350 (1999)192.
[8] E. Burstein, Physical Review, 93 (1954) 632
[9] C. Sah, R. N. Noyce, and W. Shockley, Proceeding of IRE 45 (1957) 1228
[10] J. M. Shah, Y. L. Li, T. Gessmann, E. F. Schubert, Journal of Applied Physics, 94
(2003) 2627
[11] D. K. Schroder, Semiconductor Material and Device, Characterization, Wiley,
Canada, 2006, p. 187.
[12] Ben G. Streetman, S. K. Banerjee, Solid State Electronic Devices, 6th Ed.,
Prentice-Hall, 2006, p. 196
[13] Donald A. Neamen, Semiconductor Physics & Devices, Ed., McGraw-Hill,
1997, p. 355
[14] J. B. Chckrier, B. Equer, Journal of Applied Physics, 76 (1994) 7415
[15] X. G. Zhenga, Q. S. Li, J. P. Zhao, D. Chen, B. Zhao, Y. J. Yang, L. C. Zhang, Applied Surface Science 253 (2006) 2264
[16] P. Buzhan, B. Dolgoshein, Nuclear Instruments and Methods in Physics Research A 504 (2003) 48
[17] I. S. Jeong, J. H. Kim, and S. Im, Applied Physics Letters 83 (2003) 2946
[18] S. M. Sze, Semiconductor Device Physics and Technology, John Wiley & Sons,
New York, 1985, p.278
[19] David Wood, Optoelectronic Semiconductor Devices, Prentice-Hall, 1994, p. 277
[20] R. P. Riesz, Physical Review 116 (1959) 84
[21] A. N. Banerjee, K. K. Chattopadhyay, Progress in Crystal Growth and
Characterization of Materials, 50 (2005) 52
[22] A. N. Banerjee, K. K. Chattopadhyay, Journal of Applied Physics 97 (2005)
084308
[23] R. Nagarajan, N. Duan, M. K. Jayaraj, J. Li, K. A. Vanaja, A. Yokochi, A. Draeseke, J. Tate, A. W. Sleight, International Journal of Inorganic Materials 3 (2001) 265
[24] A. N. Banerjee, C. K. Ghosh, S. Das and K. K. Chattopadhyay, Physica B 370
(2005) 264
[25] H. Hiramatsu, K. Ueda, H. Ohta, M. Orita, M. Hirano, H. Hosono, Thin Solid Films
411 (2002) 125
[26] A. N. Banerjee, C. K. Ghosh, K. K. Chattopadhyay, Solar Energy Materials &
Solar Cells 89 (2005) 75
[27] H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films 236 (1993) 27
[28] A. N. Banerjee, K. K. Chattopadhyay, Central European Journal of Physics, 6(1)
(2008) 57
[29] A. N. Banerjee, S. Nandy, C. K. Ghosh, K. K. Chattopadhyay, Thin Solid Films 515
(2007) 7324
[30] S. Takahata, K. Saiki, T. Imao , H. Nakanishi, M. Sugiyama, S. F. Chichibu,
Physica Status Solidi c 6 (2009) 1105
[31] D. S. Kim, T. J. Park, D. H. Kim, S. Y. Choi, Physica Status Solidi a, 203 (2006)
R51
[32] X. Chen, K. Ruan, G. Wu, D. Bao, Applied Physics Letters, 93 (2008) 112112
[33] R. S. Ajimsha, K. A. Vanaja, M. K. Jayaraj, P. Misra, V. K. Dixit, L. M. Kukreja,
Thin Solid Films 515 (2007) 7352
[34] K. Tonooka, N. Kikuchi, Thin Solid Films 515 (2006) 2415
[35] M. K. Jayaraj, A. D. Draeseke, J. Tate, A. W. Sleight, Thin Solid Films 397 (2001)
244
[36] S. Sheng, G. Fang, C. Li, Z. Chen, S. Ma, L. Fang, X. Zhao, Semiconductor
Science and Technology 21 (2006) 586
[37] A. Kudo, H. Yanagi, K. Ueda, H. Hosono, H. Kawazoe, Applied Physics Letters 75
(1999) 2851
[38] H. Yanagi, K. Ueda, Solid State Communication, 121 (2002) 15
[39] H. Yang, Y. Li, D. P. Norton, S. J. Pearton, Applied Physics Letters, 86 (2005)
172103
[40] R. L. Hoffman, J. F. Wager, Journal of Applied Physics, 90 (2001) 5763
[41] K. Tonooka, H. Bando, Y. Aiura, Thin Solid Films, 445 (2003) 327
[42] Y. Vygranenko, K. Wang, and A. Nathan, Applied Physics Letters, 89 (2006)
172105
[43] K. Wang, Y. Vygranenko, A. Nathan, Thin Solid Films, 515 (2007) 6981
[44] H. Ohta, M. Hirano, Applied Physics Letters, 83 (2003) 1029
[45] H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, H. Hosono, Thin Solid Films, 445
(2003) 317
[46] T. H. Moon, M. C. Jeong, W. Lee, J. M. Myoung, Applied Surface Science, 240
(2005) 280
[47] M. C. Newton, R. Shaikhaidarov, Applied Physics Letters, 94 (2009) 153112
[48] M. Dutta, D. Basak, Applied Physics Letters, 92 (2008) 212112
[49] S. Mridha, D. Basak, Journal of Applied Physics, 101 (2007) 083102
[50] H. Bo, M. Z. Quan, X. Jing, Z. Lei, Z. N. Sheng, L. Feng, S. Cheng, S. Ling, M. X.
Jie, Z. C. Yue, Y. Z. Shan, Y. Y. Ting, Superlattices and Microstructures 46 (2009)
664
[51] J. Y. Lee, Y. S. Choi, J. H. Kim, M. O. Park, S. Im, Thin Solid Films, 403 (2002)
553
[52] Ya. I. Alivov, Ü. Özgür, S. Doğan, D. Johnstone, V. Avrutin, N. Onojima, C. Liu, J.
Xie, Q. Fan, H. Morkoç, Applied Physics Letters, 86 (2005) 241108
[53] Y. F. Li, B. Yao, R. Deng, B. H. Li, J. Y. Zhang, Y. M. Zhao, D.Y. Jiang, Z. Z.
Zhang, C. X. Shan, D. Z. Shen, X. W. Fan, Y. M. Lu, Journal of Physics D:
Applied Physics, 42 (2009) 105102
[54] G. Shukla, Journal of Physics D: Applied Physics, 42 (2009) 075105
[55] H. Ohta, K. Kawamura, M. Orita, N. Sarukura, M. Hirano, H. Hosono, Electronics
Letters, 36 (2000) 984
[56] B. Ling, X. W. Sun, J. L. Zhao, S. T. Tan, Z. L. Dong, Y. Yang, H. Y. Yu, K. C. Qi, Physica E, 41 (2009) 635
[57] P. Chen, X. Ma, D. Yang, Journal of Applied Physics, 101 (2007) 053103
[58] H. Hosono, H. Ohta, K. Hayashi, M. Orita, M. Hirano, Journal of Crystal Growth,
237 (2002) 496
[59] Z. Z. Ye, Journal of Semiconductors, 30 (2009) 081001
[60] Y. Nakamura, Y. Yoshida, Y. Honaga, S. Fujitsu, Journal of the European
Ceramic Society, 25 (2005) 2167
[61] H. Hosono, Transparent Electro-active Oxides and Nano-technology
[62] Brian Chapman, Glow Discharge Processes, John Wiley and Sons, New
York, 1980
[63]http://science-education.pppl.gov/SummerInst/SGershman/Structure_of_Glow_Discharge.pdf
[64] 薄膜科技與應用, 羅吉宗著, 全華科技圖書股份有限公司 (民94)
[65] http://www.pvd-coatings.co.uk/bombardment.gif
[66] www.pvd-coatings.co.uk/unbalanced-magnetron.gif
第四章參考文獻
[1] J. M. Ting, B. S. Tsai, Materials Chemistry and Physics, 72 (2001) 273
[2] T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, Y. Hamakawa, Thin solid films,
372 (2000) 173
[3] G. Shukla, Journal of Physics D: Applied Physics, 42 (2009) 075105
[4] A. Ohtomo and M. Kawasaki, Applied Physics Letters, 75 (1999) 980
[5] A. N. Banerjee, S. Nandy, C. K. Ghosh, K. K. Chattopadhyay, Thin Solid Films, 515
(2007) 7324
[6] S. Takahata, K. Saiki, T. Imao, H. Nakanishi, M. Sugiyama, and S. F. Chichibu,
Physica Status Solidi C, 6 (2009) 1105
[7] X. Chen, K. Ruan, G. Wu, and D. Bao, Applied Physics Letters, 93 (2008) 112112
[8] M. Sugiura, K. Uragou, M. Noda, M. Tachiki, T. Kobayashi, Japan Journal of
Applied Physics, 38 (1999) 2675
[9] D. S. Kim, T. J. Park, D. H. Kim, S. Y. Choi, Physica Status Solidi a, 203 (2006)
R51
[10] K. Tonooka, N. Kikuchi, Thin Solid Films, 515 (2006) 2415
[11] Y. F. Li, B. Yao, Y. M. Lu, B. H. Li, Y. Q. Gai, C. X. Cong, Z. Z. Zhang, D. X.
Zhao, J. Y. Zhang, D. Z. Shen, X. W. Fan, Applied Physics Letters, 92
(2008)192116 2008
[12] Y. Vygranenko, K. Wang, and A. Nathan, Applied Physics Letters, 89 (2006)
172105
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47069-
dc.description.abstract本實驗以射頻磁控濺鍍在常溫下沉積n⁺AZO、n-ZnO、i-ZnO、n-MgxZn1-xO及p-CuAlO2等透明導電薄膜,在無經額外熱處理下製作成透明p-n異質接面二極體,分別在商用ITO玻璃基板上及鍍有ITO之PET基板上製作以下四種結構:n⁺AZO/p-CuAlO2/ITO,n⁺AZO/n-ZnO/p-CuAlO2/ITO,n⁺AZO/n-MgxZn1-xO/p-CuAlO2/ITO,n⁺AZO/i-ZnO/p-CuAlO2/ITO,並分別調整p層、n層及i層厚度,研究不同厚度對二極體特性及UV光響應度之影響。
在n⁺AZO/p-CuAlO2/ITO 異質接面二極體方面,分別調整p層及n⁺厚度為100nm、200nm及300nm,並同時製作在玻璃基板及PET基板上共18種二極體。啟動電壓約為0.8V,崩潰電壓隨著p層厚度增加而增加,與n⁺厚度無明顯相關,其整流特性最好者為: n⁺層厚度200nm和p層厚度300nm在玻璃上的異質接面二極體,其整流值在±4V時為 ,其UV光響應度在逆向偏壓-6V 時為 A/W。
在n⁺AZO/n-ZnO/p-CuAlO2/ITO異質接面二極體方面,分別調整p層厚度為100nm、200nm和300nm,及n層厚度為40nm、80nm和120nm,並同時製作在玻璃基板及PET基板上共18種二極體。啟動電壓約為2.0V ,崩潰電壓隨著p層及n層厚度增加而增加。其整流特性最好者為: n層厚度80nm和p層厚度200nm在玻璃基板上的異質接面二極體,其整流值在±4V時為 ,其UV光響應度在逆向偏壓-6V時為 A/W。
在n⁺AZO/n-MgxZn1-xO/p-CuAlO2/ITO異質接面二極體方面,分別調整n-MgxZn1-xO 層Mg摻雜的量,分別為0、0.05、0.1及0.3,並同時製作在玻璃基板及PET基板上共8種二極體。結果顯示啟動電壓和崩潰電壓皆隨著Mg摻雜量的增加而增加,在365nm的紫外光照射下,隨著Mg摻雜量增加,UV光響應度隨之降低。
在n⁺AZO/i-ZnO/p-CuAlO2/ITO異質接面二極體方面,分別調整i層厚度為10nm、20nm及40nm,並同時製作在玻璃基板及PET基板上共6種二極體。啟動電壓和崩塌電壓皆隨i層厚度增加而增加。其整流特性最好者為: i層厚度10nm在玻璃基板上的異質接面二極體,啟動電壓為1.8V,崩潰電壓為-9.9V,其整流值在±4V時為 ,其UV光響應度在逆向偏壓-6V時為 A/W。
zh_TW
dc.description.abstractThis thesis reports the deposition of n⁺AZO, n-ZnO, i-ZnO, n-MgxZn1-xO and p-CuAlO2 transparent conducting thin films by RF sputtering and the fabrication of transparent p-n hetero-junction thin film diode without additional heat treatment. Both commercial ITO coated glass and PET are used as substrates. Four device structures are studied here: (1) n⁺AZO/p-CuAlO2/ITO, (2) n⁺AZO/n-ZnO/p-CuAlO2/ITO,
(3) n⁺AZO/n-MgxZn1-xO/p-CuAlO2/ITO, (4) n⁺AZO/i-ZnO/p-CuAlO2/ITO. The I-V characteristics and UV responsivity of the thin film diodes with p-layer, n-layer and i- layer of different thickness are compared.
In the n⁺AZO/p-CuAlO2/ITO p-n⁺ hetero-junction series, the thickness of p-type is varied: =100, 200, 300nm and the thickness of n⁺-type is varied as: =100, 200, 300nm. The turn-on voltage is about 0.8V. The breakdown voltage increases with the increase of the p-layer thickness while is independent of the n⁺-layer thickness. The on -glass p-n⁺ hetero-junction ( =300nm, =200nm) shows a rectify ratio of at ±4V and UV responsivity of A/W at -6V.
In the n⁺AZO/n-ZnO/p-CuAlO2/ITO p-n hetero-junction series, the thickness chosen for p-layer and n-layer are: =100, 200, 300nm and =40, 80, 120nm, respectively. The turn-on voltage is about 2.0V. The breakdown voltage increases with the increase of p-layer and n-layer thickness. The on-glass p-n hetero-junction ( =200nm, =80nm) shows a rectify ratio of at ±4V and UV responsivity of A/W at -6V.
In the n⁺AZO/n-MgxZn1-xO/p-CuAlO2/ITO p-n hetero-junction series, the content of Mg in n-MgxZn1-xO is varied as: 0, 0.05, 0.1 and 0.3. The turn-on voltage and breakdown voltage increase as the content of Mg in n-MgxZn1-xO layer increases. Under the UV irradiation of 365nm, its responsivity decreases as Mg content in n-MgxZn1-xO layer increases.
In the n⁺AZO/i-ZnO/p-CuAlO2/ITO p-i-n⁺ hetero-junction series, the thickness of i-type is varied as: =10, 20, 40nm. The turn-on voltage and breakdown voltage increase as the i-layer thickness increases. The on-glass p-i-n⁺ hetero-junction ( =10nm) shows a rectify ratio of at ±4V. The turn-on voltage is about 1.8V, the breakdown voltage is about -9.9V and the UV responsivity at -6V is A/W.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:46:44Z (GMT). No. of bitstreams: 1
ntu-99-R97941074-1.pdf: 2296677 bytes, checksum: 98546d268bd0169e642a98a06cf7c2f6 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents第一章 緒論
1.1 透明導電膜及其應用………………………………………….. 1
1.2 研究動機與目的……………………………………………….. 2
1.3 章節介紹……………………………………………………….. 2
1.4 第一章參考文獻……………………………………………….. 3
第二章 簡介
2.1 引言…………………………………………………………….. 4
2.1.1 p型透明導電氧化物-CuAlO2…………………………….. 4
2.1.2 n型透明導電氧化物-ZnO...………………………………. 5
2.2 接面原理……………………………………………………….. 8
2.2.1 異質接面…………………………………………………….. 12
2.2.2 光偵測器…………………………………………………….. 15
2.2.3 透明電極選擇……………………………………………….. 21
2.3 薄膜沉積方法...……………….…………………………….. 23
2.3.1 電漿………………………………………………………….. 23
2.3.2 射頻磁控濺鍍原理………………………………………….. 26
2.4 第二章參考文獻………………………………………………. 28
第三章 實驗方法與流程
3.1 陶瓷靶材燒結…………………………………………………… 33
3.2 基板清洗………………………………………………………… 34
3.3 濺鍍儀器及濺鍍流程…………………………………………… 35
3.4 微影流程及參數設定…………………………………………… 36
3.5 量測儀器………………………………………………………… 37
3.6 第三章參考文獻………………………………………………… 39
第四章 結果與討論
4.1 薄膜光電性質分析……………………………………………… 40
4.1.1 CuAlO2 光電性質……………………………………………. 40
4.1.2 ZnO 光電性質……………………………………………. 41
4.1.3 ZnO:Al 光電性質…………………………………………... 41
4.1.4 MgZnO 光電性質…………………………………………... 42
4.1.5 異質接面結構…………………………………………….... 43
4.2 ITO/p-CuAlO2/ -ZnO:Al異質接面…………………………... 45
4.2.1 n+-ZnO:Al及p-CuAlO2厚度對二極體特性影響…………... 45
4.2.2 UV光響應度測量.................................... 53
4.3 ITO/p-CuAlO2/n-ZnO/ZnO:Al異質接面................... 57
4.3.1 n-ZnO及p-CuAlO2厚度對二極體特性影響............... 57
4.3.2 UV光響應度測量.................................... 65
4.4 ITO/p-CuAlO2/n-MgxZn1-xO/ZnO:Al 異質面.............. 72
4.4.1 Mg摻雜量對二極體特性影響.......................... 72
4.4.2 Mg摻雜量對二極體光響應度之影響……………………….. 76
4.5 ITO/p-CuAlO2/i-ZnO/n+-ZnO:Al 異質接面………………… 82
4.5.1 i-ZnO沉積參數及光電特性…………………………………. 82
4.5.2 i-ZnO厚度對二極體特性影響………………………………. 83
4.5.3 i-ZnO厚度對光響應度影響…………………………………. 89
4.6 綜合比較............................................ 94
4.6.1 I-V曲線………………………………………………………. 95
4.6.2 UV光響應度………………………………………………….. 104
4.7 第四章參考文獻.......................................106
第五章 結論及未來工作.................................. 107
dc.language.isozh-TW
dc.title以射頻磁控濺鍍製作可撓性透明p-n異質接面zh_TW
dc.titleFabrication of flexible transparent p-n heterojunction by RF sputteringen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建彰(Jian Z. Chen),楊木榮(Mu-Rong Yang),吳志毅(Chih-I Wu),吳育任(Yuh-Reen Wu)
dc.subject.keyword透明導電,可撓性,二極體,異質接面,zh_TW
dc.subject.keywordtransparent conducting,flexible,diode,heterojunction,en
dc.relation.page108
dc.rights.note有償授權
dc.date.accepted2010-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
2.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved