請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47063完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高涌泉(Yeong-Chuan Kao) | |
| dc.contributor.author | Wei-Chen Lin | en |
| dc.contributor.author | 林韋辰 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:46:34Z | - |
| dc.date.available | 2010-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-19 | |
| dc.identifier.citation | Reference
[1] L. Blanchet, “On the two-body problem in general relativity,” arXiv:gr-qc/0108086. [2] Einstein A., Infeld L., Hoffmann B., Ann. Math. 39 (1938) 65. Einstein A., Infeld L., Ann. Math. 41 (1940) 797. Einstein A., Infeld L., Can. J. Math. 1 (1949) 209. [3] W. D. Goldberger and I. Z. Rothstein, “An effective field theory of gravity for extended objects,” Phys. Rev. D 73 (2006) 104029 [arXiv:hep-th/0409156]. [4] W. D. Goldberger, “Les Houches lectures on effective field theories and gravitational radiation,”arXiv:hep-ph/0701129. [5] Sean M. Carroll “Spacetime and Geometry” Addison Wesley (2004) P.152, 274-288 [6] Einstein, A., and J. Grommer, 1927, “Allgemeine Relativitätstheorie und Bewegungsgesetze,” Sitzber. Deut. Akad. Wiss. Berlin, Kl. Math. Phys. Tech. 2-13, 235-234. [7] C. Misner, K. Thorne and J. Wheeler, “Gravitation” Freeman, (1973) P.438, P.480, P.501, P.1067-1095 [8] M. Carmeli, Equations of motion without infinite self-action terms in general relativity, Phys. Rev. 140, B1441 (1965). [9] S. Weinberg, “Gravitation and Cosmology” Wiley (1972) P.43-44, P.126-127, P.162-163, P.212-225 [10] Landau and Lifshitz “the classical theory of fields” (1962) P.367-374 [11] Chandrasekhar S., 1965a “The post-Newtonian equations of hydrodynamics in general relativity,” Astrophys. J. 142, 1488-1512. [12] Mark Srednicki “Quantum Field Theory” Cambridge University Press, 2007 P.127-130 [13] A. Zee “Quantum field theory in a nutshell” Princeton University Press, c2003 P.19, P.24-27 [14] G. ’t Hooft and M. J. G. Veltman, “One Loop Divergencies In The Theory Of Gravitation,”Annales Poincare Phys. Theor. A 20 (1974) 69; M. Veltman, in Methods in Field Theory, Proceedings of the Les Houches Summer School, 1975, eds. R. Balian and J. Zinn-Justin, North Holland, 1976. [15] J. F. Donoghue, “General Relativity As An Effective Field Theory: The Leading Quantum Corrections,” Phys. Rev. D 50 (1994) 3874. [16] Vitor Cardoso, ´Oscar J. C. Dias, Pau Figueras, ” Gravitational radiation in d > 4 from effective field theory. Phys. Rev. D 78,105010 (2008) [17] B. S. Dewitt, “Quantum Theory of Gravity. II. The Manifestly Covariant Theory” Phys. Rev. 162, 1195–1239 (1967) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47063 | - |
| dc.description.abstract | 在本篇論文中,我們研究由Goldberger 以及Rothstein所提出
的利用古典有效場論(CLEFT)來描述古典相對論理論下的非相 對論物體。利用量子場論的方法,我們可以取得CLEFT的各階 近似。特別的,利用CLEFT我們可以重新導出著名的Einstein -Infeld-Hoffmann (EIH) Lagrangian。在論文的第一部份, 我們回顧一般的Post-Newtonian formalism以及利用此方法導 出EIH equation。在論文的第二部份,我們回顧如何利用費曼 圖得出古典結果,以及將此方法應用在重力場的問題。然後我 們解釋在此CLEFT下的Feynman rules,以及利用費曼圖的方法 導出EIH Lagrangian以及相關結果。 | zh_TW |
| dc.description.abstract | In this thesis we study the classical effective field
theory (CLEFT) proposed by Goldberger and Rothstein to describe the dynamics of nonrelativistic extended objects in General Relativity. In this approach the methods of quantum field theory are employed to construct the CLEFT order by order. Especially, we use the CLEFT to re-derive the famous Einstein-Infeld- Hoffmann (EIH) Lagrangian. In the first part of this thesis, we review the conventional Post-Newtonian formalism and the traditional way to obtain EIH equation. In the second part of the thesis, we review the basic ideas how we get classical result via Feynman diagrams and how to apply them to the classical gravity problems. And then we explain the derivations of the Feynman rules in our CLEFT and use the diagrammatic method to derive the EIH Lagrangian and some other results. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:46:34Z (GMT). No. of bitstreams: 1 ntu-99-R94222032-1.pdf: 461450 bytes, checksum: f4e555e86aa9a2cc9f571c8c1181fb93 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Contents
1Introduction..............................................1 1.2 notation and convention................................2 2 The post-Newtonian Approximation.........................4 2.1 The equation of motion of free particles ..............4 2.2 The post Newtonian approximation.......................8 2.3 1PN correction for two particles system...............22 2.4 The 2PN Bianchi Identity..............................32 3 The Classical Effective field theory approach...........35 3.1 The classical limit in quantum field theory...........35 3.2 The Fourier transformed Field.........................42 3.3 The power counting rules..............................45 3.4 Einstein-Infeld-Hoffmann Lagrangian from CLEFT........47 3.5 The time reversal symmetry............................52 4. Conclusions............................................55 Appendices................................................57 A. The background field method............................57 B. Derivation of the Feynman rules for propagators and vertices...............................................63 B.1 The usual Feynman rules for graviton..................63 B.2 the Feynman rules for potential graviton..............66 C. Useful formulas........................................69 Reference.................................................71 | |
| dc.language.iso | en | |
| dc.subject | 古典有效場論 | zh_TW |
| dc.subject | 後牛頓近似 | zh_TW |
| dc.subject | 廣義相對論 | zh_TW |
| dc.subject | classical effective field theory | en |
| dc.subject | General Relativity | en |
| dc.subject | The post-Newtonian Approximation | en |
| dc.title | 有效場論方法於古典廣義相對論之應用 | zh_TW |
| dc.title | The Application of the Effective Field Theory Method
to Classical General Relativity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賀培銘,高賢忠 | |
| dc.subject.keyword | 廣義相對論,古典有效場論,後牛頓近似, | zh_TW |
| dc.subject.keyword | General Relativity,classical effective field theory,The post-Newtonian Approximation, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 450.63 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
