Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47060
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成
dc.contributor.authorKuo-Chung Hsuen
dc.contributor.author徐國鐘zh_TW
dc.date.accessioned2021-06-15T05:46:28Z-
dc.date.available2012-08-19
dc.date.copyright2010-08-19
dc.date.issued2010
dc.date.submitted2010-08-19
dc.identifier.citation[1] L. Wang, T. Gu, X. Tao, and J. Lu, 'Sensor-Based Human Activity Recognition in a Multi-user Scenario,' in Ambient Intelligence. vol. 5859, S. B. Heidelberg, Ed., Berlin, Heidelberg, pp. 78-87, 2009.
[2] L. McCowan, D. Gatica-Perez, S. Bengio, G. Lathoud, M. Barnard, and D. Zhang, 'Automatic Analysis of Multimodal Group Actions in Meetings,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 305-317, 2005.
[3] N. Nguyen, S. Venkatesh, and H. Bui, 'Recognising Behaviours of Multiple People with Hierarchical Probabilistic Model and Statistical Data Association,' Proceedings of British Machine Vision Conference, Oxford, 2005.
[4] D. H. Wilson and C. G. Atkeson, 'Simultaneous Tracking and Activity Recognition (STAR) Using Many Anonymous, Binary Sensors,' Proceedings of the 3rd International Conference on Pervasive Computing, Munich, Germany, pp. 62-79, 2005.
[5] G. Singla, D. Cook, and M. Schmitter-Edgecombe, 'Recognizing Independent and Joint Activities among Multiple Residents in Smart Environments,' Journal of Ambient Intelligence and Humanized Computing, vol. 1, pp. 57-63, 2010.
[6] C.-H. Lu, C.-L. Wu, and L.-C. Fu, 'Hide and Not Easy to Seek: A Hybrid Weaving Strategy for Context-aware Service Provision in a Smart Home,' Proceedings of IEEE Asia-Pacific Services Computing Conference, Yilan, Taiwan, 2008.
[7] D. J. Cook and S. K. Das, 'How Smart Are our Environments? An Updated Look at the State of the Art,' Pervasive Mobile Computing, vol. 3, pp. 53-73, 2007.
[8] J. Kim, 'An Ontology Model and Reasoner to Build an Autonomic System for U-Health Smart Home,' Master Thesis, Department of Computer and Communications Engineering, POSTECH, Korea, 2009.
[9] Washington State University, CASAS Smart Home Project, http://ailab.eecs.wsu.edu/casas/
[10] MIT, MIT House_n, http://architecture.mit.edu/house_n/
[11] N. Oliver, E. Horvitz, and A. Grag, 'Layered Representations for Human Activity Recognition,' Proceedings of the 4th IEEE International Conference on Multimodal Interfaces, Pittsburgh, PA, USA, pp. 3-8, 2002.
[12] E. M. Tapia, S. S. Intille, and K. LarsonIn, 'Activity Recognition in the Home using Simple and Ubiquitous Sensors,' Proceedings of International Conference on Pervasive Computing, Vienna, Austria, pp. 158-175, 2004.
[13] T. v. Kasteren, A. Noulas, G. Englebienne, and B. Krose, 'Accurate Activity Recognition in a Home Setting,' Proceedings of ACM International Conference on Ubiquitous Computing, Seoul, Korea, pp. 1-9, 2008.
[14] D. H. Hu, S. J. Pan, V. Zheng, N. N. Liu, and Q. Yang, 'Real World Activity Recognition with Multiple Goals,' Proceedings of ACM International Conference on Ubiquitous Computing, Seoul, Korea, 2008.
[15] J. Modayil, T. Bai, and H. Kautz, 'Improving the Recognition of Interleaved Activities,' Proceedings of ACM International Conference on Ubiquitous Computing, Seoul, Korea, 2008.
[16] Y.-C. Ho, C.-H. Lu, I.-H. Chen, S.-S. Huang, and L.-C. Fu, 'Active-Learning Assisted Self-reconfigurable Activity Recognition in a Dynamic Environments,' Proceedings of IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 1567-1572, 2009.
[17] Y.-H. Chen, C.-H. Lu, K.-C. Hsu, L.-C. Fu, Y.-J. Yeh, and L.-C. Kuo, 'Preference Model Assisted Activity Recognition Learning in a Smart Home Environment,' Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, pp. 4657-4662, 2009.
[18] M. Brand, N. Oliver, and A. Pentland, 'Coupled Hidden Markov Models for Complex Action Recognition,' Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp. 994-999, 1997.
[19] D. Youtian, C. Feng, X. Wenli, and L. Yongbin, 'Recognizing Interaction Activities using Dynamic Bayesian Network,' Proceedings of 18th International Conference on Pattern Recognition, Hong Kong, pp. 618-621, 2006.
[20] T. Gu, Z. Wu, L. Wang, X. Tao, and J. Lu, 'Mining Emerging Patterns for Recognizing Activities of Multiple Users in Pervasive Computing,' Proceedings of International ICST Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Toronto, ON, Canada, pp. 1-10, 2009.
[21] P. Natarajan and R. Nevatia, 'Coupled Hidden Semi Markov Models for Activity Recognition,' Proceedings of the IEEE Workshop on Motion and Video Computing, Austin, TX, USA, p. 10, 2007.
[22] Y. Du, F. Chen, and W. Xu;, 'Human Interaction Representation and Recognition Through Motion Decomposition,' Signal Processing Letters, vol. 14, pp. 952-955, 2007.
[23] K. Murphy, 'Dynamic Bayesian Networks: Representation, Inference and Learning,' Ph.D. Dissertation, Computer Science Division, UC Berkeley, 2002.
[24] D. Heckerman, 'A Tutorial on Learning with Bayesian Networks,' Technical Report, 1995.
[25] A. P. Dempster, N. M. Laird, and D. B. Rubin, 'Maximum Likelihood from Incomplete Data via the EM Algorithm,' Journal of the Royal Statistical Society. Series B (Methodological), vol. 39, pp. 1-38, 1977.
[26] J. Lafferty, A. McCallum, and F. Pereira, 'Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data,' Proceedings of 18th International Conference on Machine Learning, Williamstown, MA, USA, pp. 282-289, 2001.
[27] D. L. Vail, M. M. Veloso, and J. D. Lafferty, 'Conditional Random Fields for Activity Recognition,' Proceedings of International Conference on Autonomous Agents and Multi-agent Systems, Honolulu, Hawaii, 2007.
[28] C.-C. Lian and J. Y.-J. Hsu, 'Probabilistic Models for Concurrent Chatting Activity Recognition,' Proceedings of International Joint Conference On Artificial Intelligence, Pasadena, California, USA, pp. 1138-1143, 2009.
[29] J. N. Darroch and D. Ratcliff, 'Generalized Iterative Scaling for Log-linear Models,' Proceedings of Annals of Mathematical Statistics, pp. 1470-1480, 1972.
[30] I. Bancarz and M. Osborne, 'Improved Iterative Scaling Can Yield Multiple Globally Optimal Models with Radically Differing Performance Levels,' Proceedings of the 19th International Conference On Computational Linguistics, Taipei, Taiwan, pp. 1-7, 2002.
[31] M. Hestenes and E. Stiefel, 'Methods of Conjugate Gradients for Solving Linear Systems,' Journal of Research of the National Bureau of Standards, vol. 49, pp. 409-436, 1952.
[32] D. C. Liu and J. Nocedal, 'On the Limited Memory BFGS Method for Large Scale Optimization Methods,' Mathematical Programming, vol. 45, pp. 503-528, 1989.
[33] R. H. Byrd, J. Nocedal, and R. B. Schnabel, 'Representations of Quasi-Newton Matrices and their Use in Limited Memory Methods,' Mathematical Programming, vol. 63, pp. 129-156, 1994.
[34] F. Sha and F. Pereira, 'Shallow Parsing with Conditional Random Fields,' Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, Edmonton, Canada, pp. 134-141, 2003.
[35] W. K. Edwards and R. E. Grinter, 'At Home with Ubiquitous Computing: Seven Challenges,' Proceedings of ACM International Conference on Ubiquitous Computing, Atlanta, Georgia, USA, pp. 256-272, 2001.
[36] A. Quattoni, S. Wang, L.-P. Morency, M. Collins, and T. Darrell, 'Hidden Conditional Random Fields,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, pp. 1848 - 1852, 2007.
[37] A. Mccallum and K. Bellare, 'A Conditional Random Field for Discriminatively-trained Finite-state String Edit Distance,' Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, Edinburgh, Scotland, 2005.
[38] M.-W. Mak and S.-Y. Kung, 'Conditional Random Fields for the Prediction of Signal Peptide Cleavage Sites,' Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, pp. 1605-1608, 2009.
[39] L. Atallah and G.-Z. Yang, 'Review: The Use of Pervasive Sensing for Behaviour Profiling - a Survey,' Pervasive and Mobile Computing, vol. 5, pp. 447-464, 2009.
[40] K. Murphy, 'Dynamic Bayesian Networks: Representation, Inference and Learning,' Ph.D. Dissertation, University of California, Berkeley, 2002.
[41] C. Vogler and D. Metaxas, 'A Framework for Recognizing the Simultaneous Aspects of American Sign Language,' Computer Vision Image Understanding, vol. 81, pp. 358-384, 2001.
[42] J. Bilmes, The Graphical Models Toolkit (GMTK), http://ssli.ee.washington.edu/~bilmes/gmtk/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47060-
dc.description.abstract從環境中的資訊辨識出使用者當下的行為是挑戰的,為了提供使用者更合適的服務,了解使用者的行為將能更正確地提供使用者所需要的服務。在過去的研究裡,為了簡化問題的複雜度,往往有家中僅有單一居住者的假設。本文的目標是建立一個系統能學習多位居住者的行為模式,並能即時的辨識家中各個居住者的行為。
本文的貢獻主要有以下三點:第一,茲因在非侵入性環境中資訊的不充足,多人行為辨識的資料鏈結並不容易被分類。於是我們嘗試設計能夠推論資料鏈結的模型;第二,由於每個居住者的行為有可能被其他居住者影響,人與人之間的互動必須被納入考慮,這樣的動機使我們提出了一個多人行為辨識模型;第三,手動標記資料鏈結是一個十分耗費人力的工作,特別是在多人環境中,因此我們實作了一個自動標記方法。
zh_TW
dc.description.abstractReliable recognition of activities from cluttered sensory data is challenging and important for a smart home to provide more desirable services. Traditionally, most of prior works often assume that there is always only one resident at home for the purpose of simplification of solving a complicated problem regarding multiple-resident activity recognition. Therefore, the goal of this thesis is to build a system which learns multiple-resident activity models to facilitate reliable activity recognition of each resident.
The main contribution of this thesis is three-fold. Firstly, due to the insufficiency of information in an environment using pervasive non-obtrusive sensors, data association for multiple-resident activity recognition is hard to be identified. Therefore, we aim to design a model which can infer the data association. Secondly, interactions among residents should be modeled since the activity of one resident may be influenced by another, and this concern motivates us to propose a multiple-resident activity recognition system which can adapt to the interaction between residents. Thirdly, because manually annotating data association is laborious, especially in an environment involving multiple residents, we design a mechanism which can automatically annotate the data association.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:46:28Z (GMT). No. of bitstreams: 1
ntu-99-R97922020-1.pdf: 2019474 bytes, checksum: 3564e67b33961b401c9031b5c083b4f8 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsTable of Contents
口試委員會審定書 #
誌謝 i
中文摘要 iii
Abstract iv
Relevant Publications v
Table of Contents vi
List of Figures x
List of Tables xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Challenges 2
1.2.1 Challenges of Activity Recognition 3
1.2.2 Challenges of Multiple-resident Activity Recognition 3
1.3 Related Work 5
1.3.1 Multi-resident Dataset Collection 5
1.3.2 Activity Recognition 6
1.3.3 Multiple-Resident Activity Recognition 7
1.4 Objective 9
1.5 Thesis Organization 10
Chapter 2 Preliminaries 11
2.1 Mathematical Terminology 11
2.1.1 Metric Space 11
2.1.2 Probability Theory 12
2.2 Wireless Sensor Network (WSN) 13
2.3 Dynamic Bayesian Network (DBN) 17
2.3.1 Representation 18
2.3.2 Inference 19
2.3.3 Learning 20
2.4 Conditional Random Field (CRF) 22
2.4.1 Representation and Inference 23
2.4.2 Learning 24
Chapter 3 Activity Recognition System 25
3.1 Problem Definition 26
3.2 System Overview 26
3.3 Sensor Deployment 27
3.3.1 Data Association Annotation 30
3.4 Data Preprocessing 33
3.4.1 Quantization 35
3.4.2 Data Fusion 36
3.4.3 Feature Categorization 36
3.4.4 Feature Selection and Feature Vectors 37
3.5 Model Training and Activity Recognition 38
Chapter 4 Data Association Assisted Two-layer Multi-Resident Activity
Recognition 39
4.1 System Overview 40
4.2 Comparison between DBN and CRF 41
4.3 First Layer - Data Association Model 42
4.3.1 Transition Table 43
4.4 Second Layer - Activity Model 44
4.4.1 Linear-Chain Conditional Random Fields (LCRF) 46
4.5 Preliminary Evaluation 47
4.5.1 CASAS Dataset 47
4.5.2 Data Association Evaluation 48
4.5.3 Correlation between Data Association and Activity Recognition 50
Chapter 5 Interaction Modeling Enhanced Multi-Resident Activity
Recognition 52
5.1 Enhanced Second Layer 53
5.1.1 Parallel Hidden Markov Models (PHMMs) 53
5.1.2 Coupled Hidden Markov Models (CHMMs) 54
5.2 Interaction Feature Assisted Multiple-resident Activity Recognition 56
5.2.1 CHMM with interaction vertices 56
5.3 Preliminary Evaluation 60
5.3.1 Feature Vectors for this Evaluation 60
5.3.2 Experimental Result 63
Chapter 6 System Evaluation 65
6.1 Data Collection 65
6.1.1 Sensor Deployment 68
6.1.2 Middleware 70
6.1.3 Data Annotation 71
6.1.4 Data Collection Procedure 71
6.2 Experimental Result 72
6.2.1 Experiment: Two-layer Model 72
6.2.2 Experiment: Enhanced Second Layer 74
Chapter 7 Conclusion 76
7.1 Summary 76
7.2 Future Work 77
REFERENCE 78
dc.language.isoen
dc.subject動態貝氏網路zh_TW
dc.subject智慧家庭zh_TW
dc.subject行為辨識zh_TW
dc.subject多居住者zh_TW
dc.subject條件隨機場zh_TW
dc.subject資料鏈結zh_TW
dc.subjectActivity Recognitionen
dc.subjectDynamic Bayesian Network (DBN)en
dc.subjectData Associationen
dc.subjectConditional Random Field (CRF)en
dc.subjectMultiple Residentsen
dc.subjectSmart Homeen
dc.title利用非侵入性環境感測器達成智慧型家庭下之多人行為辨識zh_TW
dc.titleMultiple-Resident Activity Recognition Using Pervasive Non-obtrusive Sensors in a Smart Home Environmenten
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇木春,郭斯彥,蔡超人,馮明惠
dc.subject.keyword智慧家庭,行為辨識,多居住者,條件隨機場,資料鏈結,動態貝氏網路,zh_TW
dc.subject.keywordSmart Home,Activity Recognition,Multiple Residents,Conditional Random Field (CRF),Data Association,Dynamic Bayesian Network (DBN),en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2010-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved