請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4705完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳健輝(Gen-Huey Chen) | |
| dc.contributor.author | Jen-Feng Huang | en |
| dc.contributor.author | 黃任鋒 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:45:35Z | - |
| dc.date.available | 2021-05-14T17:45:35Z | - |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-08 | |
| dc.identifier.citation | [1] M. H. Rehmani and Y. Faheem, Cognitive Radio Sensor Networks: Applications, Architectures, and Challenges. IGI Global, 2014.
[2] FCC, “Notice of proposed rule making and order,” 2003. [3] C. Stevenson, G. Chouinard, Z. Lei,W. Hu, S. Shellhammer, andW. Caldwell, “Ieee 802.22: The first cognitive radio wireless regional area network standard,” IEEE Communications Magazine, vol. 47, no. 1, pp. 130–138, 2009. [4] M. Youssef, M. Ibrahim, M. Abdelatif, L. Chen, and A. Vasilakos, “Routing metrics of cognitive radio networks: A survey,” IEEE Communications Surveys Tutorials, vol. 16, no. 1, pp. 92–109, 2014. [5] B. Wang and K. Liu, “Advances in cognitive radio networks: A survey,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 1, pp. 5–23, 2011. [6] M. Masonta, M. Mzyece, and N. Ntlatlapa, “Spectrum decision in cognitive radio networks: A survey,” IEEE Communications Surveys Tutorials, vol. 15, no. 3, pp. 1088–1107, 2013. [7] H. Sun, A. Nallanathan, C.-X.Wang, and Y. Chen, “Wideband spectrum sensing for cognitive radio networks: a survey,” IEEE Wireless Communications, vol. 20, no. 2, pp. 74–81, 2013. [8] L. Gavrilovska, D. Denkovski, V. Rakovic, and M. Angjelichinoski, “Medium access control protocols in cognitive radio networks: Overview and general classification,” IEEE Communications Surveys Tutorials, vol. 16, no. 4, pp. 2092–2124, Fourthquarter 2014. [9] M. Masonta, M. Mzyece, and N. Ntlatlapa, “Spectrum decision in cognitive radio networks: A survey,” IEEE Communications Surveys Tutorials, vol. 15, no. 3, pp. 1088–1107, 2013. [10] W.-Y. Lee and I. Akyldiz, “A spectrum decision framework for cognitive radio networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 2, pp. 161–174, 2011. [11] C. Do, N. Tran, C. S. Hong, S. Lee, J.-J. Lee, and W. Lee, “A lightweight algorithm for probability-based spectrum decision scheme in multiple channels cognitive radio networks,” IEEE Communications Letters, vol. 17, no. 3, pp. 509–512, 2013. [12] D. Niyato and E. Hossain, “Market-equilibrium, competitive, and cooperative pricing for spectrum sharing in cognitive radio networks: Analysis and comparison,” IEEE Transactions on Wireless Communications, vol. 7, no. 11, pp. 4273–4283, 2008. [13] X. Zhang and H. Su, “Opportunistic spectrum sharing schemes for cdma-based uplink mac in cognitive radio networks,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 4, pp. 716–730, 2011. [14] R. Zhou, X. Li, V. Chakravarthy, and Z. Wu, “Spectrum mobility demonstration of smse based overlay cognitive radio via software defined radio,” in Proceedings IEEE Symposium on Dynamic Spectrum Access Networks (DySPAN), 2011. [15] W.-Y. Lee and I. Akyildiz, “Optimal spectrum sensing framework for cognitive radio networks,” IEEE Transactions on Wireless Communications, vol. 7, no. 10, pp. 3845–3857, 2008. [16] G. Zhang, A. Huang, H. Shan, J. Wang, T. Quek, and Y.-D. Yao, “Design and analysis of distributed hopping-based channel access in multi-channel cognitive radio systems with delay constraints,” IEEE Journal on Selected Areas in communications, vol. 32, no. 11, pp. 2026–2038, 2014. [17] H. Liu, Z. Lin, X. Chu, and Y.-W. Leung, “Jump-stay rendezvous algorithm for cognitive radio networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 10, pp. 1867–1881, 2012. [18] K. Bian and J.-M. Park, “Maximizing rendezvous diversity in rendezvous protocols for decentralized cognitive radio networks,” IEEE Transactions on Mobile Computing, vol. 12, no. 7, pp. 1294–1307, 2012. [19] K. Bian, J.-M. Park, and R. Chen, “Control channel establishment in cognitive radio networks using channel hopping,” IEEE Journal on Selected Areas in Communications, vol. 29, pp. 689–703, 2011. [20] Y. Hou, Y. Shi, and H. Sherali, “Spectrum sharing for multi-hop networking with cognitive radios,” IEEE Journal on Selected Areas in Communications, vol. 26, pp. 146–155, 2008. [21] P. Bahl, R. Chandra, and J. Dunagan, “SSCH: slotted seeded channel hopping for capacity improvement in ieee 802.11 ad-hoc wireless networks,” in Proceedings The Annual ACM International Conference on Mobile Computing and Networking (MobiCom), 2004. [22] Y. Zhang, Q. Li, G. Yu, and B.Wang, “ETCH: Efficient channel hopping for communication rendezvous in dynamic spectrum access networks,” in Proceedings The Annual IEEE International Conference on Computer Communications (INFOCOM), 2011. [23] J. Shin, D. Yang, and C. Kim, “A channel rendezvous scheme for cognitive radio networks,” IEEE Communications Letters, vol. 14, no. 10, pp. 954–956, 2010. [24] D. Yang, J. Shin, and C. Kim, “Deterministic rendezvous scheme in multichannel access networks,” IET Electronics Letters, vol. 46, no. 20, pp. 1402–1404, 2010. [25] M. D. Silvius, A. Y. F. Ge, A. B. MacKenzie, and C.W. Bostian, “Smart radio: Spectrum access for first responders,” in Proceedings International Society for Optical Engineering, 2008. [26] C.-F. Shih, T. Y.Wu, andW. Liao, “DH-MAC: A dynamic channel hopping mac protocol for cognitive radio networks,” in Proceedings IEEE International Conference on Communications (ICC), 2010. [27] N. C. Theis, R. W. Thomas, and L. A. DaSilva, “Rendezvous for cognitive radios,” IEEE Transactions on Mobile Computing, vol. 10, no. 2, pp. 216–227, 2010. [28] V. Reguera, E. Ortiz Guerra, R. Demo Souza, E. Fernandez, and G. Brante, “Short channel hopping sequence approach to rendezvous for cognitive networks,” IEEE Communications Letters, vol. 18, no. 2, pp. 289–292, 2014. [29] S.-H. Wu, C.-C. Wu, W.-K. Hon, and K. G. Shin, “Rendezvous for heterogeneous spectrum-agile devices,” in Proceedings The Annual IEEE International Conference on Computer Communications (INFOCOM), 2014. [30] Z. Gu, Q.-S. Hua, A. Y. Wang, and F. C. Lau, “Nearly optimal asynchronous blind rendezvous algorithm for cognitive radio networks,” in Proceedings IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (SECON), 2013. [31] K. Wu, F. Han, F. Han, and D. Kong, “Rendezvous sequence construction in cognitive radio ad-hoc networks based on difference sets,” in Proceedings The IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2013. [32] L. A. DaSilva and I. Guerreiro, “Sequence-based rendezvous for dynamic spectrum access,” in Proceedings IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), 2008. [33] G.-Y. Chang, W.-H. Teng, H.-Y. Chen, and J.-P. Sheu, “Novel channel-hopping schemes for cognitive radio networks,” IEEE Transactions on Mobile Computing, vol. 13, no. 2, 2014. [34] I.-H. Chuang, H.-Y.Wu, K.-R. Lee, and Y. H. Kuo, “Alternate hop-and-wait channel rendezvous method for cognitive radio networks,” in Proceedings The Annual IEEE International Conference on Computer Communications (INFOCOM), 2013. [35] G.-Y. Chang and J.-F. Huang, “A fast rendezvous channel-hopping algorithm for cognitive radio networks,” IEEE Communications Letters, vol. 17, no. 7, pp. 1475– 1487, 2013. [36] R. Chen, J.-M. Park, and J. Reed, “Defense against primary user emulation attacks in cognitive radio networks,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 1, pp. 25–37, 2008. [37] H. Li and Z. Han, “Dogfight in spectrum: Combating primary user emulation attacks in cognitive radio systems, part I: Known channel statistics,” IEEE Transactions on Wireless Communications, vol. 9, no. 11, pp. 3566–3577, 2010. [38] H. Li and Z. Han, “Dogfight in spectrum: Combating primary user emulation attacks in cognitive radio systems part II: Unknown channel statistics,” IEEE Transactions on Wireless Communications, vol. 10, no. 1, pp. 274–283, 2011. [39] A. Sampath, H. Dai, H. Zheng, and B. Zhao, “Multi-channel jamming attacks using cognitive radios,” in Proceedings International Conference on Computer Communications and Networks (ICCCN), 2007, pp. 352–357. [40] J. Esch, “A survey of security challenges in cognitive radio networks: Solutions and future research directions,” Proceedings of the IEEE, vol. 100, no. 12, pp. 3170– 3171, 2012. [41] Y.-H. Oh and D. Thuente, “Channel detecting jamming attacks against jump-stay based channel hopping rendezvous algorithms for cognitive radio networks,” in Proceedings International Conference on Computer Communications and Networks (ICCCN), 2013. [42] Y.-H. Oh and D. Thuente, “Sequence sensing jamming attacks against modularbased channel hopping rendezvous algorithms for cognitive ratio networks,” in Proceedings IEEE International Conference on Communications (ICC), 2013. [43] “Fcc part 15 rules.” [Online]. Available: http://www.gpo.gov/fdsys/pkg/CFR-2005-title47-vol1/content-detail.html [44] R. Scholtz, “The origins of spread-spectrum communications,” IEEE Transactions on Communications, vol. 30, no. 5, pp. 822–854, 1982. [45] A. J. Viterbi, CDMA: Principles of spread spectrum communication. Addison Wesley, 1995. [46] Q. Wang, P. Xu, K. Ren, and M. Li, “Delay-bounded adaptive UFH-based antijamming wireless communication,” in Proceedings The Annual IEEE International Conference on Computer Communications (INFOCOM), 2011. [47] M. Strasser, S. Capkun, S. Capkun, and M. Cagalj, “Jamming-resistant key establishment using uncoordinated frequency hopping,” in Proceedings IEEE Symposium on Security and Privacy (S&P), 2008. [48] M. Strasser, C. Poぴpper, and S. Cˇ apkun, “Efficient uncoordinated FHSS anti-jamming communication,” in Proceedings ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2009. [49] E.-K. Lee, S. Y. Oh, and M. Gerla, “Frequency quorum rendezvous for fast and resilient key establishment under jamming attack,” ACM SIGMOBILE Mobile Computing and Communications Review., vol. 14, no. 4, pp. 1–3, 2010. [50] Y.-H. Oh and D. Thuente, “Limitations of quorum-based rendezvous and key establishment schemes against sophisticated jamming attacks,” in Proceedings IEEE Military Communications Conference (MILCOM), 2012. [51] W. Stallings, Cryptography and Network Security Principles and Practice. New York: Prentice Hall, 2010. [52] L. Chen, K. Bian, L. Chen, C. Liu, J.-M. J. Park, and X. Li, “A group-theoretic framework for rendezvous in heterogeneous cognitive radio networks,” in Proceedings ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2014. [53] Z. Gu, Q.-S. Hua, and W. Dai, “Fully distributed algorithms for blind rendezvous in cognitive radio networks,” in Proceedings ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2014. [54] D. Slater, P. Tague, R. Poovendran, and B. J. Matt, “A coding-theoretic approach for efficient message verification over insecure channels,” in Proceedings ACM Conference on Wireless Networking Security (WiSec), 2009. [55] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “Gambling in a rigged casino: The adversarial multi-armed bandit problem,” in Proceedings The Annual Symposium on Foundations of Computer Science (FOCS), 1995. [56] Q. Wang, P. Xu, K. Ren, and X.-Y. Li, “Towards optimal adaptive UFH-based antijamming wireless communication,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 1, pp. 16–30, 2012. [57] Y.Wu, B.Wang, K. Liu, and T. Clancy, “Anti-jamming games in multi-channel cognitive radio networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 1, pp. 4–15, 2012. [58] M. Abdel-Rahman and M. Krunz, “Game-theoretic quorum-based frequency hopping for anti-jamming rendezvous in dsa networks,” in Proceedings IEEE International Symposium on Dynamic Spectrum Access Networks (DYSPAN), 2014. [59] E. Altman, K. Avrachenkov, and A. Garnaev, “A jamming game in wireless networks with transmission cost,” in Proceedings the EuroFGI International Conference on Network Control and Optimization (NET-COOP), 2007. [60] S. Khattab, D. Mosse, and R. Melhem, “Jamming mitigation in multi-radio wireless networks: Reactive or proactive?” in Proceedings International Conference on Security and Privacy in Communication Netowrks (SecureComm), 2008. [61] M. Cagalj, S. Capkun, and J.-P. Hubaux, “Wormhole-based antijamming techniques in sensor networks,” IEEE Transactions on Mobile Computing, vol. 6, no. 1, pp. 100–114, 2007. [62] J.-R. Jiang, Y.-C. Tseng, C.-S. Hsu, and T.-H. Lai, “Quorum-based asynchronous power-saving protocols for ieee 802.11 ad hoc networks,” Springer Journal Mobile Network and Applications, vol. 10, no. 1, 2005. [63] W.-S. Luk and T.-T. Wong, “Two new quorum based algorithms for distributed mutual exclusion,” in Proceedings IEEE Distributed Computing Systems, 1997. [64] M. Maekawa, “An algorithm for mutual exclusion in decentralized systems,” ACM Transactions on Computer Systems, vol. 3, no. 2, 1985. [65] S. Lai, B. Zhang, B. Ravindran, and H. Cho, “CQS-Pair: Cyclic quorum system pair for wakeup scheduling in wireless sensor networks,” in Proceedings Principles of Distributed Systems (OPODIS), 2008. [66] S. Lai, B. Zhang, B. Ravindran, and H. Cho, “Cqs-pair: Cyclic quorum system pair for wakeup scheduling in wireless sensor networks,” in Proceedings Principles of Distributed Systems (OPODIS), 2008. [67] G.-Y. Chang, J.-F. Huang, and Y.-S. Wang, “Matrix-based channel hopping algorithms for cognitive radio networks,” IEEE Transactions on Wireless Communications (Early Access), 2015. [68] J.-F. Huang, G.-Y. Chang, and G.-X. Hung, “A quorum-based channel hopping scheme for jamming resilience,” in Proceedings IEEE International Conference on Parallel and Distributed Systems workshop (IEEE ICPADS 2014), 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4705 | - |
| dc.description.abstract | 感知網路(Cognitive radio networks, CRNs)是解決頻譜短缺以及部分
頻普低利用度的關鍵技術。為了保護原始使用者的網路權益,感知網 路內的節點只能相遇(rendezvous)在可用頻道上進行傳送、交換資料、 交換控制封包。其中,可用頻道代表原始使用空出的頻道(idle licensed channel)。然而,實作這樣的相遇技術是艱難的挑戰,因為可用頻道 會隨著使用者的位置、不同時間改變。同時為了減少相遇失敗機率以 及增加傳輸吞吐量,感知網路中傳輸對的通訊訊協定應該設計成可相 遇在所有頻道上(maximizing rendezvous diversity) 以及有快速相遇性質(i.e., minimizing maximum conditional time to rendezvous (MCTTR))。此外,為了充分利用多頻道存取(multi-channel medium access) 的優點,相遇應該平均分攤到不同的頻道上(minimizing channel loading)。在本論文中,我們提出了相遇跳頻演演算法(rendezvous channel hopping algorithms)。所提出的演算法可以運作在時間不同步、收送雙方皆適用的演算法。我們所提出的演算法可提供最好的頻道負擔(minimum channel loading)、相遇不同頻道(maximum rendezvous diversity)、以及目前最短的最大相遇時間(MCTTR)。 然而,現存的跳頻演算法面對阻斷攻擊(jamming attacks) 時卻是 相當無助的,特別是當攻擊者具備感知天線可以監控頻道狀況、 快速跳頻時。許多的抗阻斷攻擊演算法必須是先決定節點共享金 鑰(pre-shared secrets)。在感知網路中,事先決定共享金鑰通常是不 可行的事情,因為鄰近節點可能隨時都會不一樣。因此,抗阻斷 攻擊演算法如何不事先交換共享金鑰成為重要的研究議題。即便如 此,現存的方法,例如:非合作式跳頻演算法(uncoordinated frequency hopping,UFH),存在著不能同時保證最大相遇時間以及角色共享(也 就是不用事先決定角色是送端或者收端)。特別注意到一點,角色不能 共享很難應用到現實生活中,因為一個角色隨時都有可能會需要收封 包、送封包。也就是有可能會需要扮演收端、送端的角色。在本論文 中,我們提出了一系列的抗阻斷演算法,而這些演算法可以角色共享 以及保證最大的相遇時間。此外,我們分析演算法有高安全度可以抵 抗不同的阻斷攻擊。 | zh_TW |
| dc.description.abstract | Cognitive radio networks (CRNs) have emerged as a critical technique to solve spectrum shortage problem and enhance the utilization of licensed channels. To prevent from interfering with the co-locate incumbent networks, before
data transmission, nodes in CRNs should rendezvous on an available channel (i.e., idle licensed channel) for establishing a link or exchanging control information. However, implementing rendezvous is challenging because the availability of channels is time-varying and position-varying. For reducing rendezvous failure and increasing throughput, a node pair in CRN should be able to rendezvous on every licensed channels (i.e., maximizing rendezvous diversity) and rendezvous on an available channel as soon as possible (i.e., minimizing maximum conditional time to rendezvous (MCTTR)). Besides, in order to take full advantage of the frequency diversity of multichannel medium access, rendezvous should be spread out in time and channel (i.e., minimizing channel loading). On the other hand, existing channel hopping algorithms for CRNs are usually vulnerable to jamming attacks, especially when jammers have cognitive radios to perform channel sensing and fast channel switching. Many mitigating approaches for coping with jamming attacks rely on pre-shared secrets (e.g., pre-shared hopping sequences). In CRNs, pre-sharing secrets between senders and receivers is usually impractical (because neighborhood dynamically changes, and receivers of a broadcast may be unknown to the sender). Hence, anti-jamming channel hopping approaches without pre-shared secrets have gained more and more research interests. However, existing approaches, e.g., uncoordinated frequency hopping (UFH), either have unbounded time to rendezvous on an available channel (even no signals of jammers and PUs appear), or require role pre-assignment (SUs should be pre-assigned as a sender or receiver). Role pre-assignment is not applicable to environments where each SU may play a sender and a receiver, simultaneously. In this thesis, we proposed rendezvous channel hopping algorithms, which can be used without time synchronization and role pre-assignment (each node has a pre-assigned role as either a sender or a receiver). Our proposed algorithms have maximum rendezvous diversity and minimum channel loading, and outperform in terms of MCTTR. To enhance the security of communicating pair, we also proposed an algorithm which has high security level to resist various jamming attacks. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:45:35Z (GMT). No. of bitstreams: 1 ntu-104-D00922025-1.pdf: 4699736 bytes, checksum: 1e99ae52a1bdb7038b8db95157198e02 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要i
Abstract iii 1 Introduction 1 1.1 Rendezvous Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Security of Rendezvous Algorithms . . . . . . . . . . . . . . . . . . . . 4 2 Literature Review 7 2.1 Previous Works about Rendezvous Algorithms . . . . . . . . . . . . . . 7 2.1.1 Non-ID-Based Approaches . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 ID-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Previous Works about Security of Rendezvous Algorithms . . . . . . . . 10 2.3 Cyclic Quorum-Based Channel Hopping Systems . . . . . . . . . . . . . 13 3 Two New Rendezvous Algorithms 15 3.1 Fast Rendezvous Channel Hopping Algorithm (FRCH) . . . . . . . . . . 15 3.1.1 System Model & Assumptions . . . . . . . . . . . . . . . . . . . 15 3.1.2 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.3 Maximum Time to Rendezvous . . . . . . . . . . . . . . . . . . 16 3.1.4 Maximum Conditional Time to Rendezvous . . . . . . . . . . . . 16 3.2 Triangle Number Based Channel Hopping Algorithm (T-CH) . . . . . . . 23 3.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.3 Maximum Conditional Time to Rendezvous . . . . . . . . . . . . 26 3.2.4 Degree of Rendezvous . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.5 Channel Loading . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 Two New Secure Rendezvous Algorithms 31 4.1 Anti-Jamming Channel Hopping Algorithm (AJCH*) . . . . . . . . . . . 31 4.1.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . 31 4.1.2 Maximum Time to Rendezvous . . . . . . . . . . . . . . . . . . 32 4.1.3 Security Level . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Secure Channel Hopping Algorithm (Sec-CH) . . . . . . . . . . . . . . . 34 4.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.2 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.3 Defence against Jamming Attacks . . . . . . . . . . . . . . . . . 36 4.2.4 Communications of SUs . . . . . . . . . . . . . . . . . . . . . . 39 4.2.5 Rendezvous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 v 4.2.6 Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.7 Security Level . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5 Results 45 5.1 Simulation Results for FRCH . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.1 Proportion of Rendezvous Pairs . . . . . . . . . . . . . . . . . . 45 5.1.2 Successful Rendezvous per Slot . . . . . . . . . . . . . . . . . . 46 5.1.3 Average Time to Rendezvous . . . . . . . . . . . . . . . . . . . 46 5.2 Simulation Results for T-CH . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2.1 Impact of the Number of PUs . . . . . . . . . . . . . . . . . . . 47 5.2.2 Impact of PU Busy/Idle Period . . . . . . . . . . . . . . . . . . . 49 5.2.3 Impact of the Number of Licensed Channels . . . . . . . . . . . 49 5.2.4 Impact of the Length of ID String . . . . . . . . . . . . . . . . . 50 5.2.5 Impact on Packet Collision . . . . . . . . . . . . . . . . . . . . . 51 5.2.6 ID-Based vs. Non-ID-Based . . . . . . . . . . . . . . . . . . . . 52 5.3 Simulation Results for Sec-CH . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.1 Number of Jammers . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3.2 Number of Jammers’ Antennas . . . . . . . . . . . . . . . . . . 56 5.3.3 Number of Channels . . . . . . . . . . . . . . . . . . . . . . . . 56 6 Conclusion 59 Bibliography 61 | |
| dc.language.iso | en | |
| dc.subject | 跳頻 | zh_TW |
| dc.subject | 感知網路 | zh_TW |
| dc.subject | hopping sequence | en |
| dc.subject | Cognitive Radio Networks | en |
| dc.title | 感知網路跳頻問題研究 | zh_TW |
| dc.title | The Frequency Hopping Problem in Cognitive Radio Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 張貴雲(Guey-Yun Chang) | |
| dc.contributor.oralexamcommittee | 逄愛君(Ai-Chun Pang),呂育道(Yuh-Dauh Lyuu),許健平(Jang-Ping Sheu),吳曉光(Hsiao-kuang Wu),劉邦鋒(Pang-Feng Liu) | |
| dc.subject.keyword | 感知網路,跳頻, | zh_TW |
| dc.subject.keyword | Cognitive Radio Networks,hopping sequence, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-07-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 4.59 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
