Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47055
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林?輝(Feng-Heui Lin)
dc.contributor.authorYen-Liang Liuen
dc.contributor.author劉彥良zh_TW
dc.date.accessioned2021-06-15T05:46:16Z-
dc.date.available2015-10-21
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-19
dc.identifier.citation1. Gail DB & Lenfant CJ (1983) Cells of the lung: biology and clinical implications. (Translated from eng) Am Rev Respir Dis 127(3):366-387 (in eng).
2. Engelhardt JF, Schlossberg H, Yankaskas JR, & Dudus L (1995) Progenitor cells of the adult human airway involved in submucosal gland development. (Translated from eng) Development 121(7):2031-2046 (in eng).
3. Hong KU, Reynolds SD, Watkins S, Fuchs E, & Stripp BR (2004) Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. (Translated from eng) Am J Pathol 164(2):577-588 (in eng).
4. Evans MJ, Cabral-Anderson LJ, & Freeman G (1978) Role of the Clara cell in renewal of the bronchiolar epithelium. (Translated from eng) Lab Invest 38(6):648-653 (in eng).
5. Fehrenbach H (2001) Alveolar epithelial type II cell: defender of the alveolus revisited. (Translated from eng) Respir Res 2(1):33-46 (in eng).
6. Suen HC, Catlin EA, Ryan DP, Wain JC, & Donahoe PK (1993) Biochemical immaturity of lungs in congenital diaphragmatic hernia. (Translated from eng) J Pediatr Surg 28(3):471-475; discussion 476-477 (in eng).
7. Abman SH (2001) Bronchopulmonary dysplasia: 'a vascular hypothesis'. (Translated from eng) Am J Respir Crit Care Med 164(10 Pt 1):1755-1756 (in eng).
8. Ambalavanan N & Carlo WA (2004) Bronchopulmonary dysplasia: new insights. (Translated from eng) Clin Perinatol 31(3):613-628 (in eng).
9. Bhatt AJ, et al. (2001) Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. (Translated from eng) Am J Respir Crit Care Med 164(10 Pt 1):1971-1980 (in eng).
10. Bourbon J, Boucherat O, Chailley-Heu B, & Delacourt C (2005) Control mechanisms of lung alveolar development and their disorders in bronchopulmonary dysplasia. (Translated from eng) Pediatr Res 57(5 Pt 2):38R-46R (in eng).
11. Sugihara H, Toda S, Miyabara S, Fujiyama C, & Yonemitsu N (1993) Reconstruction of alveolus-like structure from alveolar type II epithelial cells in three-dimensional collagen gel matrix culture. (Translated from eng) Am J Pathol 142(3):783-792 (in eng).
12. Adamson IY & Young L (1996) Alveolar type II cell growth on a pulmonary endothelial extracellular matrix. (Translated from eng) Am J Physiol 270(6 Pt 1):L1017-1022 (in eng).
13. Bates SR, et al. (2002) Recovery of rat type II cell surfactant components during primary cell culture. (Translated from eng) Am J Physiol Lung Cell Mol Physiol 282(2):L267-276 (in eng).
14. Mondrinos MJ, et al. (2006) Engineering three-dimensional pulmonary tissue constructs. (Translated from eng) Tissue Eng 12(4):717-728 (in eng).
15. Mondrinos MJ, Koutzaki S, Lelkes PI, & Finck CM (2007) A tissue-engineered model of fetal distal lung tissue. (Translated from eng) Am J Physiol Lung Cell Mol Physiol 293(3):L639-650 (in eng).
16. Andrade CF, Wong AP, Waddell TK, Keshavjee S, & Liu M (2007) Cell-based tissue engineering for lung regeneration. (Translated from eng) Am J Physiol Lung Cell Mol Physiol 292(2):L510-518 (in eng).
17. Mondrinos MJ, et al. (2008) In vivo pulmonary tissue engineering: contribution of donor-derived endothelial cells to construct vascularization. (Translated from eng) Tissue Eng Part A 14(3):361-368 (in eng).
18. Cortiella J, et al. (2006) Tissue-engineered lung: an in vivo and in vitro comparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. (Translated from eng) Tissue Eng 12(5):1213-1225 (in eng).
19. Lin YM, Zhang A, Rippon HJ, Bismarck A, & Bishop AE (2010) Tissue engineering of lung: the effect of extracellular matrix on the differentiation of embryonic stem cells to pneumocytes. (Translated from eng) Tissue Eng Part A 16(5):1515-1526 (in eng).
20. Cortiella J, et al. (2010) Influence of Acellular Natural Lung Matrix on Murine Embryonic Stem Cell Differentiation and Tissue Formation. (Translated from Eng) Tissue Eng Part A (in Eng).
21. Ling TY, et al. (2006) Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. (Translated from eng) Proc Natl Acad Sci U S A 103(25):9530-9535 (in eng).
22. Dobbs LG (1990) Isolation and culture of alveolar type II cells. (Translated from eng) Am J Physiol 258(4 Pt 1):L134-147 (in eng).
23. Ware LB & Matthay MA (2002) Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair. (Translated from eng) Am J Physiol Lung Cell Mol Physiol 282(5):L924-940 (in eng).
24. Olsen CO, Isakson BE, Seedorf GJ, Lubman RL, & Boitano S (2005) Extracellular matrix-driven alveolar epithelial cell differentiation in vitro. (Translated from eng) Exp Lung Res 31(5):461-482 (in eng).
25. Pittenger MF, et al. (1999) Multilineage potential of adult human mesenchymal stem cells. (Translated from eng) Science 284(5411):143-147 (in eng).
26. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, & Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. (Translated from eng) Dev Cell 6(4):483-495 (in eng).
27. Spiegelman BM & Ginty CA (1983) Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. (Translated from eng) Cell 35(3 Pt 2):657-666 (in eng).
28. Thomas CH, Collier JH, Sfeir CS, & Healy KE (2002) Engineering gene expression and protein synthesis by modulation of nuclear shape. (Translated from eng) Proc Natl Acad Sci U S A 99(4):1972-1977 (in eng).
29. Akeson AL, et al. (2003) Temporal and spatial regulation of VEGF-A controls vascular patterning in the embryonic lung. (Translated from eng) Dev Biol 264(2):443-455 (in eng).
30. Greenberg JM, et al. (2002) Mesenchymal expression of vascular endothelial growth factors D and A defines vascular patterning in developing lung. (Translated from eng) Dev Dyn 224(2):144-153 (in eng).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47055-
dc.description.abstract在本研究中,我們製備有均一孔徑之明膠生物支架將小鼠肺部幹細胞/先驅細胞(pulmonary stem/progenitor cell)種植於其中並進行細胞培養,於體外培養以及植入免疫缺陷小鼠(SCID mice)體內皆能形成肺泡狀的結構,於先前的研究中,我們利用無血清細胞培養成功地從初生小鼠肺部分離出肺部幹細胞/先驅細胞。此細胞表現出幹細胞之生物標記如:Oct-4、Nanog、Sox-2、以及CCSP(Clara細胞分泌蛋白),顯示此細胞為Clara細胞之亞群,而Clara細胞於肺部損傷的動物模型中一直以來被認為是肺部幹細胞/先驅細胞。我們分離與純化的初代培養細胞能夠在體外培養的環境中存活數週,同時也具有細胞分化的能力,於體外培養的環境下能夠進一步分化成肺泡第二型細胞(alveolar type II cell)與肺泡第一型細胞(alveolar type I cell)。此結果顯示,於組織工程學上,此肺部幹細胞/先驅細胞具有在體外進行細胞培養進而形成類肺泡組織的潛力。於本研究中,我們利用微流體通道所製備具有均一大小的明膠微氣泡(gelatin microbubble),在一定的氣體壓力以及適當的明膠液體流速下,能夠形成穩定的明膠微氣泡,收集堆疊整齊的微氣泡後成膠、交連、抽真空後所得之生物支架(scaffold)進行三維的細胞培養。透過控制微流體通道之大小氣體壓力以及液體流速,能夠製備出具有不同直徑之微氣泡,本研究中成功的製備出50微米(μm)
至200 微米等不同孔徑之生物支架。此具有高孔隙以及海綿狀的生物支架結構非
常類似肺泡組織。本研究欲應用此肺部幹細胞/先驅細胞與均一孔徑之生物支架
以發展肺部組織工程於再生醫學。
小鼠肺部幹細胞/先驅細胞經10 至14 天培養後種植於生物支架後,再經兩
週的培養,以共軛焦顯微鏡、組織切片、以及電子顯微鏡能夠發現肺泡幹細胞/
先驅細胞於生物支架中形成肺泡狀的結構,同時利用反轉錄聚合酵素鏈鎖反應以
及細胞免疫螢光染色發現細胞表現出肺泡第二型細胞與肺泡第一型細胞。此結果
顯示肺部幹細胞/先驅細胞種植於生物支架後,不僅能夠形成肺泡狀的結構,也能被誘導分化成肺泡細胞。於動物模式的實驗中,我們將種植細胞的生物支架植
入免疫缺陷小鼠的背部皮下組織,於生物體內觀察肺部幹細胞/先驅細胞的表現。
植入後一週、二週、四週後取出,也同樣的呈現肺泡狀的結構,表現出肺泡細胞
的特定蛋白。利用綠色螢光小鼠培養出的肺部幹細胞/先驅細胞,有利我們觀察
細胞於受植入的小鼠體內存活的情況,實驗發現,植入的細胞至少能夠在免疫缺
陷小鼠皮下組織存活四週。移植物裡也觀察到血管新生的現象發生,犧牲小鼠前
透過尾靜脈注射dextran-FITC 進行血管染色,於螢光顯微鏡下,能觀察移植物
中的血管新生,比較植入不含細胞的生物支架或含細胞之生物支架,結果顯示含
細胞者生成較多的血管,肺部幹細胞/先驅細胞可能在血管新生中也扮演著重要
的角色。
本研究結果顯示利用具有均一孔徑的明膠生物支架進行三維的肺泡幹細胞/
先驅細胞培養,提供了肺臟細胞一個適當的微環境生長。經此組織工程培養後的
人工肺泡組織不僅具有肺泡狀的結構,同時也分化出特定的肺泡細胞,在未來具
有發展肺部組織工程,以及臨床上利用組織工程進行再生醫學治療的潛力。
zh_TW
dc.description.abstractIn our research, we demonstrated that the pulmonary stem/progenitor cells within monodisperse gelatin-microbubble scaffold could create alveoli-like construct in vitro and in vivo. In previous study, we have reported a serum-free primary culture system to generate pulmonary stem/progenitor cells from neonatal mouse. The cells expressed stem cell markers, such as Oct-4, Nanog, Sox-2 and CC10, and also Clara cell secretion protein indicating they represented a sub-population of Clara cells which have long been implicated as pulmonary stem/progenitor cells in lung injury models. These stem cells could be kept for weeks in the primary cultures and underwent terminal differentiation to alveolar type II (AT2) and type I (AT1) like cells sequentially in in vitro differentiation. The results displayed that the stem/progenitor cells hold the potential promise to grow pulmonary tissue in vitro. In the study, the microfluidic method was applied to production of monodisperse gelatin-microbubble scaffold. Under the stable formation of bubble regiem, monodisperse gelatin-microbubbles modulated by varying the flow rate, gas pressure, and channel size. The microbubble scaffolds, the size ranging from 50μm to 200μm, were seeded with pulmonary stem/progenitor cells to explore the application potential for stem cell-based tissue engineering. After 10 to 14 days’ culture, the scaffold showed porous and spongy structures similar to alveolar units. The structure for the scaffold and the cells were examined by RT-PCR, immunohistochemistry and electromicroscopy. Cells forming “alveolar-like structures” in the inner sites of the microbubbles were stained positive for alveolar AT2 and AT1 cells by immunohistochemical analysis and RT-PCR, and there were still a few stem/progenitor cells keeping their phenotype in the structure. The results indicated that the pulmonary stem/progenitor cells could be induced to the terminal differentiation for AT2-like and AT1-like cells as well as the promotion of three-dimensional alveolar tissue growth via the gelatin-microbubble scaffold. In animal model, we utilized the subcutaneous transplantation model on in vivo generation of vascularized pulmonary tissue constructs. The constructs were transplated subcutaneously into the dorsal body of adult C.B17/Icr-scid mice to facilitate in vivo pulmonary tissue construct formation. After transplantation, the constructs showed “alveolar-like structures” in scaffold with positive immunohistochemical staining for epithelial and endothelial cells. The pulmonary cells of GFP transgenic mice in the constructs were able to survive in the subcutaneous tissue of adult mice for at least 28 days. Angiogenesis of the constructs was demonstrated with tail vein injection of fluorescein isothiocyanate–conjugated dextran. In the scaffold-only controls, some level of host infiltrate, but no measurable vascularization, was detected. This study suggests that the three dimensional cell culture system provided an appropriate microenvironment for pulmonary cells, and demonstrates that the cell-based tissue engineering possessed the potential promise to regenerate alveolar-like structures for the development of engineering lung tissue for clinical applications.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:46:16Z (GMT). No. of bitstreams: 1
ntu-99-R97548024-1.pdf: 5988547 bytes, checksum: 7769a9cc2fe047ab39135e14ff2875b9 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAbbreviation……………………………………………………………i
中文摘要…………………………………………………………………ii
English abstract…………………………………………………….iv
Chapter 1 Introduction………………………………………………1
Chapter 2 Materials and Methods…………………………………4
Chapter 3 Results……………………………………………………14
Chapter 4 Discussion…………………………………………………24
Chapter 5 Conclusion…………………………………………………27
Reference………………………………………………………………28
Figures and tables…………………………………………………31
dc.language.isoen
dc.subject生物支架zh_TW
dc.subject肺臟幹細胞zh_TW
dc.subject肺臟組織工程zh_TW
dc.subjectscaffolden
dc.subjectpulmonary stem/progenitor cellsen
dc.subjectlung tissue engineeringen
dc.title小鼠肺部幹細胞與具有均一孔洞之明膠生物支架於肺部組織工程上之應用zh_TW
dc.titleThe Application of Mouse Pulmonary Stem/progenitor Cells and Monodisperse Gelatin-microbbule scaffold for Lung Tissue Engineeringen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor林泰元(Thai-Yen Ling),林耿慧(Keng-Hui Lin)
dc.contributor.oralexamcommittee楊禎明(Jen-Ming Yang),王盈錦(Yng-Jiin Wang)
dc.subject.keyword肺臟幹細胞,肺臟組織工程,生物支架,zh_TW
dc.subject.keywordpulmonary stem/progenitor cells,lung tissue engineering,scaffold,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2010-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
5.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved