Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47025
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊宏
dc.contributor.authorBing-Yu Chiangen
dc.contributor.author江秉諭zh_TW
dc.date.accessioned2021-06-15T05:45:32Z-
dc.date.available2020-08-17
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-19
dc.identifier.citation1. Fang, F. C. (2004) Nat Rev Microbiol 2, 820-832
2. Masip, L., Veeravalli, K., and Georgiou, G. (2006) Antioxid Redox Signal 8,753-762
3. Meister, A., and Anderson, M. E. (1983) Annu Rev Biochem 52, 711-760
4. Fahey, R. C., Brown, W. C., Adams, W. B., and Worsham, M. B. (1978) J Bacteriol 133, 1126-1129
5. Newton, G. L., Arnold, K., Price, M. S., Sherrill, C., Delcardayre, S. B., Aharonowitz, Y., Cohen, G., Davies, J., Fahey, R. C., and Davis, C. (1996) J Bacteriol 178, 1990-1995
6. Fahey, R. C., and Sundquist, A. R. (1991) Adv Enzymol Relat Areas Mol Biol 64, 1-53
7. Fahey, R. C., Buschbacher, R. M., and Newton, G. L. (1987) J Mol Evol 25, 81-88
8. Chesney, J. A., Eaton, J. W., and Mahoney, J. R., Jr. (1996) J Bacteriol 178, 2131-2135
9. Ferguson, G. P., and Booth, I. R. (1998) J Bacteriol 180, 4314-4318
10. Carmel-Harel, O., and Storz, G. (2000) Annu Rev Microbiol 54, 439-461
11. Ritz, D., and Beckwith, J. (2001) Annu Rev Microbiol 55, 21-48
12. Bollinger, J. M., Jr., Kwon, D. S., Huisman, G. W., Kolter, R., and Walsh, C. T. (1995) J Biol Chem 270, 14031-14041
13. Tetaud, E., Manai, F., Barrett, M. P., Nadeau, K., Walsh, C. T., and Fairlamb, A. H. (1998) J Biol Chem 273, 19383-19390
14. Tabor, H., and Tabor, C. W. (1975) J Biol Chem 250, 2648-2654
15. Krauth-Siegel, R. L., and Ludemann, H. (1996) Mol Biochem Parasitol 80, 203-208
16. Ariyanayagam, M. R., and Fairlamb, A. H. (2001) Mol Biochem Parasitol 115, 189-198
17. Awad, S., Henderson, G. B., Cerami, A., and Held, K. D. (1992) Int J Radiat Biol 62, 401-407
18. Pai, C. H., Chiang, B. Y., Ko, T. P., Chou, C. C., Chong, C. M., Yen, F. J., Chen, S., Coward, J. K., Wang, A. H., and Lin, C. H. (2006) EMBO J 25, 5970-5982
19. Lin, C. H., Kwon, D. S., Bollinger, J. M., Jr., and Walsh, C. T. (1997) Biochemistry 36, 14930-14938
20. Comini, M. A., Guerrero, S. A., Haile, S., Menge, U., Lunsdorf, H., and Flohe, L. (2004) Free Radic Biol Med 36, 1289-1302 59
21. Ariyanayagam, M. R., Oza, S. L., Guther, M. L., and Fairlamb, A. H. (2005) Biochem J 391, 425-432
22. Smith, K., Borges, A., Ariyanayagam, M. R., and Fairlamb, A. H. (1995) Biochem J 312 ( Pt 2), 465-469
23. Flohe, L., Hecht, H. J., and Steinert, P. (1999) Free Radic Biol Med 27, 966-984
24. Boveris, A., Sies, H., Martino, E. E., Docampo, R., Turrens, J. F., and Stoppani, A. O. (1980) Biochem J 188, 643-648
25. Fyfe, P. K., Oza, S. L., Fairlamb, A. H., and Hunter, W. N. (2008) J Biol Chem 283, 17672-17680
26. Muller, S., Liebau, E., Walter, R. D., and Krauth-Siegel, R. L. (2003) Trends Parasitol 19, 320-328
27. Wyllie, S., Oza, S. L., Patterson, S., Spinks, D., Thompson, S., and Fairlamb, A. H. (2009) Mol Microbiol
28. Poole, L. B., and Nelson, K. J. (2008) Curr Opin Chem Biol 12, 18-24
29. Poole, L. B., Karplus, P. A., and Claiborne, A. (2004) Annu Rev Pharmacol Toxicol 44, 325-347
30. Woo, H. A., Jeong, W., Chang, T. S., Park, K. J., Park, S. J., Yang, J. S., and Rhee, S. G. (2005) J Biol Chem 280, 3125-3128
31. Denu, J. M., and Tanner, K. G. (2002) Methods Enzymol 348, 297-305
32. Denu, J. M., and Tanner, K. G. (1998) Biochemistry 37, 5633-5642
33. Hochgrafe, F., Mostertz, J., Pother, D. C., Becher, D., Helmann, J. D., and Hecker, M. (2007) J Biol Chem 282, 25981-25985
34. Fratelli, M., Demol, H., Puype, M., Casagrande, S., Villa, P., Eberini, I., Vandekerckhove, J., Gianazza, E., and Ghezzi, P. (2003) Proteomics 3, 1154-1161
35. Cross, J. V., and Templeton, D. J. (2004) Biochem J 381, 675-683
36. Rinna, A., Torres, M., and Forman, H. J. (2006) Free Radic Biol Med 41, 86-91
37. Dalle-Donne, I., Rossi, R., Giustarini, D., Colombo, R., and Milzani, A. (2003) Free Radic Biol Med 35, 1185-1193
38. Adachi, T., Weisbrod, R. M., Pimentel, D. R., Ying, J., Sharov, V. S., Schoneich, C., and Cohen, R. A. (2004) Nat Med 10, 1200-1207
39. Miranda-Vizuete, A., Rodriguez-Ariza, A., Toribio, F., Holmgren, A., Lopez-Barea, J., and Pueyo, C. (1996) J Biol Chem 271, 19099-19103
40. Lillig, C. H., Potamitou, A., Schwenn, J. D., Vlamis-Gardikas, A., and Holmgren, A. (2003) J Biol Chem 278, 22325-22330
41. Kim, S. O., Merchant, K., Nudelman, R., Beyer, W. F., Jr., Keng, T., DeAngelo,
60 J., Hausladen, A., and Stamler, J. S. (2002) Cell 109, 383-396
42. Hondorp, E. R., and Matthews, R. G. (2004) PLoS Biol 2, e336
43. Storz, G., Tartaglia, L. A., and Ames, B. N. (1990) Science 248, 189-194
44. Shim, H., and Fairlamb, A. H. (1988) J Gen Microbiol 134, 807-817
45. Benitez, L. V., and Allison, W. S. (1974) J Biol Chem 249, 6234-6243
46. Ellis, H. R., and Poole, L. B. (1997) Biochemistry 36, 15013-15018
47. Dalle-Donne, I., Rossi, R., Colombo, G., Giustarini, D., and Milzani, A. (2009) Trends Biochem Sci 34, 85-96
48. Dalle-Donne, I., Rossi, R., Giustarini, D., Colombo, R., and Milzani, A. (2007) Free Radic Biol Med 43, 883-898
49. Dalle-Donne, I., Milzani, A., Gagliano, N., Colombo, R., Giustarini, D., and Rossi, R. (2008) Antioxid Redox Signal 10, 445-473
50. Brennan, J. P., Miller, J. I., Fuller, W., Wait, R., Begum, S., Dunn, M. J., and Eaton, P. (2006) Mol Cell Proteomics 5, 215-225
51. Greenberg, J. T., and Demple, B. (1986) J Bacteriol 168, 1026-1029
52. Chattopadhyay, M. K., Tabor, C. W., and Tabor, H. (2003) Proc Natl Acad Sci U S A 100, 2261-2265
53. Jung, I. L., and Kim, I. G. (2003) Biochem Biophys Res Commun 301, 915-922
54. Tkachenko, A. G., and Fedotova, M. V. (2007) Biochemistry (Mosc) 72, 109-116
55. Imlay, J. A., Chin, S. M., and Linn, S. (1988) Science 240, 640-642
56. Melchers, J., Dirdjaja, N., Ruppert, T., and Krauth-Siegel, R. L. (2007) J Biol Chem 282, 8678-8694
57. Lundstrom-Ljung, J., Vlamis-Gardikas, A., Aslund, F., and Holmgren, A. (1999) FEBS Lett 443, 85-88
58. Xu, Z., Lam, L. S., Lam, L. H., Chau, S. F., Ng, T. B., and Au, S. W. (2008) FASEB J 22, 127-137
59. Salmeen, A., Andersen, J. N., Myers, M. P., Meng, T. C., Hinks, J. A., Tonks, N. K., and Barford, D. (2003) Nature 423, 769-773
60. van Montfort, R. L., Congreve, M., Tisi, D., Carr, R., and Jhoti, H. (2003) Nature 423, 773-777
61. Nakamura, T., Yamamoto, T., Abe, M., Matsumura, H., Hagihara, Y., Goto, T., Yamaguchi, T., and Inoue, T. (2008) Proc Natl Acad Sci U S A 105, 6238-6242
62. Choi, H. J., Kang, S. W., Yang, C. H., Rhee, S. G., and Ryu, S. E. (1998) Nat Struct Biol 5, 400-406
63. Lountos, G. T., Jiang, R., Wellborn, W. B., Thaler, T. L., Bommarius, A. S., and Orville, A. M. (2006) Biochemistry 45, 9648-9659 61
64. Katz, B. A., Elrod, K., Luong, C., Rice, M. J., Mackman, R. L., Sprengeler, P. A., Spencer, J., Hataye, J., Janc, J., Link, J., Litvak, J., Rai, R., Rice, K.,
Sideris, S., Verner, E., and Young, W. (2001) J Mol Biol 307, 1451-1486
65. Salsbury, F. R., Jr., Knutson, S. T., Poole, L. B., and Fetrow, J. S. (2008) Protein Sci 17, 299-312
66. Godat, E., Herve-Grvepinet, V., Veillard, F., Lecaille, F., Belghazi, M., Bromme, D., and Lalmanach, G. (2008) Biol Chem 389, 1123-1126
67. Chu, F., Ward, N. E., and O'Brian, C. A. (2001) Carcinogenesis 22, 1221-1229
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47025-
dc.description.abstract有些格蘭氏陰性菌中, 麩氨基硫亞精胺 (glutathionylspermidine, Gsp) 的生成與分解是由一個雙功能性酵素麩氨基硫亞精胺合成酶/水解酶 (glutathionylspermidine synthetase/amidase, GspSA) 所催化。然而,Gsp 在菌體中的生理功能至今仍是不清楚。此外,GspSA 中兩個具有相反活性的區塊如何相互調控目前也是個未知謎團。在本論文中,我們首先提出Gsp 會與大腸桿菌中蛋白質上的某些硫基 (thiol) 形成雙硫鍵。此種新的蛋白質後修飾會隨著外界的氧化壓力的上升而增加。隨後的研究發現,過氧化氫會選擇性的抑制 Gsp水解酶的活性,而不會影響Gsp 合成酶的活性。這選擇性抑制的現象會導致細胞內 Gsp 的累積,並進而造成蛋白質 Gsp thiolation 的上升。利用X 光繞射分析與化學修飾,我們進一步解釋的這個 Gsp amidase 的選擇性抑制是來自於催化胺基酸Cys 59 被氧化成 sulfenic acid。由高解析度X光繞射分析指出GspSA 中有數個特殊的氫鍵來穩定此 sulfenic acid。本研究中提出了一套機制來描述在大腸桿菌中Gsp的如何進行調控,並說明其在氧化還原中所扮演的角色。¬而 Grx-/GspSA- 雙基因突變株顯示出對氧化壓力高度敏感,也說明了 Gsp 在對大腸桿菌在氧化壓力扮演的角色。最後,為了瞭解到底有哪些蛋白質會被修飾,我們藉由被生物素標定的亞精胺與大腸桿菌進行培養。大腸桿菌內的 Gsp 合成酶會合成具有生物素標定的 Gsp 並進一步結合到蛋白質上,藉此親合性純化與質譜分析而得到被 Gsp 標定蛋白質的身分與位置。zh_TW
dc.description.abstractCertain bacteria synthesize glutathionylspermidine (Gsp), from glutathione (GSH) and spermidine. E. coli Gsp synthetase/amidase (GspSA) catalyzes both the synthesis and hydrolysis of Gsp. Prior to the work reported herein, the physiological role(s) of Gsp or how the two opposing GspSA activities are regulated had not been elucidated. We report that Gsp-modified proteins from E. coli contain mixed disulfides of Gsp and protein thiols, standing for a new type of post-translational modification formerly undocumented. The level of these proteins is increased by oxidative stress. We attribute the accumulation of such proteins to the selective inactivation of GspSA amidase activity. X-ray crystallography and a chemical modification study indicated that the catalytic cysteine thiol of the GspSA amidase domain is transiently inactivated by H2O2 oxidation to sulfenic acid, which is stabilized by a very short hydrogen bond with a water molecule. We propose a set of reactions that explains how the levels of Gsp and Gsp S-thiolated proteins are modulated in response to oxidative stress. The hypersensitivities of GspSA/glutaredoxin null mutants to H2O2 support the idea that GspSA and glutaredoxin act synergistically to regulate the redox environment of E. coli. Additionally, a platform based on metabolic incorporation of biotinated spermidine was developed to identify Gsp Sthiolated proteins.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:45:32Z (GMT). No. of bitstreams: 1
ntu-99-D94b46005-1.pdf: 2448536 bytes, checksum: c527514cd73c8e861093fe605dfda279 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContent
Acknowledgement.................................I
Abstract ......................................II
Abbreviations.................................III
Content........................................IV
1. Introduction
1.1 The role of glutathione in prokaryotic .....1
1.2 Glutathionylspermidine (Gsp) in E. coli and protozoa
................................................4
1.3 The various states of cysteine modification
................................................11
1.4 Protein S-thiolation .......................13
1.5 The motivation of this thesis ..............15
2. Methods and Materials
2.1 Protein expression and purification ........19
2.2 Reagents and chemicals .....................19
2.3 Enzyme activity assay ......................19
2.4 Analytical ultracentrifugation .............21
2.5 Identification of the cysteine-sulfenic acid by dimedone labeling and subsequent mass spectrometric analysis .......................................22
2.6 Conversion of Gsp-disulfide to GSH by the Gsp amidase and GSH reductase ..............................22
2.7 The viabilities of GspSA and glutaredoxin null mutants after H2O2 treatment ...........................23
2.8 In vitro and in vivo Gsp determination in the presence of H2O2 ........................................23
2.9 Detection of protein Gsp S-thiolation in E. coli
................................................24
2.10 Gsp amidase-catalyzed removal of the Spd moiety from Gsp-thiolated proteins .........................25
2.11 Enrichment and identification of Gsp thiolated proteins .......................................26
3. Results
3.1 Probing the catalytic mechanism of Gsp synthetase by site-direct mutagenesis ........................28
3.2 Selective inactivation of Gsp amidase activity by H2O2 and GSNO .......................................29
3.3 Identification of Cys59-sulfenic acid by x-ray crystallography and chemical Modification–Mass Spectrometry ...................................31
3.4 Rapid accumulation of Gsp in vitro and in vivo in the presence of H2O2 ...............................33
3.5 Conversion of Gsp-disulfide to GSH by the Gsp amidase and GSH reductase couple .......................35
3.6 Discovery of Gsp S-thiolated proteins and their conversion to GSH S-thiolated proteins by the action of Gsp amidase ........................................36
3.7 Sensitivities of different E. coli strains to oxidative stress .........................................38
3.8 Gsp synthetase can accept the N8-derivated spermidine analogue as its substrate. .....................39
3.9 Gsp S-thiolation of OxyR ...................40
3.10 Large-scale identification of Protein Gsp S-thiolation .....................................42
4. Discussion
4.1 A proposed model to demonstrate a functional role of GspSA .......................................45
4.2 The unusual cysteine-sulfenic acid is primarily stabilized by a very short H-bond ...........49
4.3 Dissimilar amidase active sites linked to differential redox regulation ............................52
4.3 Large-scale analysis of protein Gsp S-thiolation by using biotinylated spermidine (Spd-biotin) ...53
5. Future Aspects ............................56
6. Reference ............................58
7. Figures, Table and Legends..................62
dc.language.isoen
dc.subject胺zh_TW
dc.subject麩氨基&#63950zh_TW
dc.subject亞&#64029zh_TW
dc.subjectglutathionylspermidineen
dc.title探討麩氨基硫亞精胺合成酶/水解酶之反應機制與其在 大腸桿菌的氧化還原中所扮演的角色zh_TW
dc.titleE. coli Gsp Synthetase/Amidase: Reaction Mechanisms and Its Role in Redox Regulationen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee王惠鈞,陳玉如,吳蕙芬,賈景山
dc.subject.keyword麩氨基&#63950,亞&#64029,胺,zh_TW
dc.subject.keywordglutathionylspermidine,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2010-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved