Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47018
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor樓國隆(Kuo-Long Lou)
dc.contributor.authorJia-Nan Jianen
dc.contributor.author簡嘉男zh_TW
dc.date.accessioned2021-06-15T05:45:22Z-
dc.date.available2015-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-08-19
dc.identifier.citationHancock, R. E. & Lehrer, R. Cationic peptides: a new source of antibiotics.
Trends Biotechnol. 16, 82-8 (1998).
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415,
389-95 (2002).
Steiner, H., Hultmark, D., Engstrom, A., Bennich, H. & Boman, H. G.
Sequence and specificity of two antibacterial proteins involved in insect
immunity. Nature 292, 246-8 (1981).
Cole, A. M., Weis, P. & Diamond, G. Isolation and characterization of
pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder.
J. Biol. Chem. 272, 12008-13 (1997).
Fernandez de Caleya, R., Gonzalez-Pascual, B., Garcia-Olmedo, F. &
Carbonero, P. Susceptibility of phytopathogenic bacteria to wheat purothionins
in vitro. Appl. Microbiol. 23, 998-1000 (1972).
Frohm, M., Agerberth, B., Ahangari, G., Stahle-Backdahl, M., Liden, S.,
Wigzell, H., & Gudmundsson, G. H. The expression of the gene coding for
the antibacterial peptide LL-37 is induced in human keratinocytes during
inflammatory disorders. J. Biol. Chem. 272, 15258-63 (1997).
Jenssen, H., Hamill, P. & Hancock, R.E. Peptide antimicrobial agents. Clin.
Microbiol. Rev. 19, 491-511 (2006).
Oren, Z. & Shai, Y. Mode of action of linear amphipathic alpha-helical
antimicrobial peptides. Biopolymers 47, 451-63 (1998).
Brotz, H., Bierbaum, G., Leopold, K., Reynolds, P. E. & Sahl, H. G. The
lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II.
Antimicrob. Agents Chemother. 42, 154-60 (1998).
Kragol, G., Lovas, S., Varadi, G., Condie, B. A., Hoffmann, R. & Otvos, L. Jr.
The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40, 3016-26,
(2001).
Park, C. B., Kim, H. S. & Kim, S. C. Mechanism of action of the antimicrobial
peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun.
244, 253-7 (1998).
Yonezawa, A., Kuwahara, J., Fujii, N. & Sugiura, Y. Binding of tachyplesins I
to DNA revealed by footprinting analysis: significant contribution of
secondary structure to DNA binding and implication for biological action.
Biochemistry 31, 2998-3004 (1992).
Boman, H. G., Agerberth, B. & Boman, A. Mechanisms of action on
Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides
from pig intestine. Infect. Immun. 61, 2978-84 (1993).
Lehrer, R. I., Barton, A., Daher, K. A., Harwig, S. S., Ganz, T., Selsted, M. E.
Interaction of human defensins with Escherichia coli Mechanism of
bactericidal activity. J. Clin. Invest. 84, 553-61 (1989).
Subbalakshmi, C. & Sitaram, N. Mechanism of antimicrobial action of
indolicidin. FEMS Microbiol. Lett. 160, 91-6 (1998).
Patrzykat, A., Friedrich, C. L., Zhang, L., Mendoza, V. & Hancock, R. E. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob. Agents Chemother.
46, 605-14 (2002).
Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in
bacteria? Nat. Rev. Microbiol. 3, 238-50 (2005).
Habermann, E. Bee and wasp venoms. Science 177, 314-22 (1972).
Dempsey, C. E. The actions of melittin on membranes. Biochim. Biophys.
Acta. 1031, 143-161 (1990).
Terwilliger, T. C. & Eisenberg, D. The structure of melittin .Ⅱ. Interaction of
the structure. J. Biol. Chem. 257, 6016-22 (1982).
Vogel, H. & Jahnig, F. The structure of melittin in membranes. J. Biophys. 50,
573-82. (1986).
Sessa, G., Freer, J. H., Colacicco, G. & Weismann, G. Interaction of a lytic peptide, melittin, with lipid membrane systems. J. Biol Chem. 244, 3575-82.
(1969).
Vogel, H. & Jahnig, F. The structure of melittin in membranes. Biophys. J. 50,
573-82 (1986).
Rex, S. Pore formation induced by the peptide melittin in different lipid
vesicle membranes. Biophys. Chem. 58, 75-85 (1996).
Yang, L., Harroun, T. A., Weiss, T.M., Ding, L. & Huang, H. W.
Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores
Biophys J. 81, 1475-85 (2001).
Lee, M. T., Chen, F. Y. & Huang, H. W. Energetics of pore formation induced
by membrane active peptides. Biochemistry 43, 3590-9 (2004).
Batenberg, T. & Lafleur, M. Study of vesicle leakage induced by melittin.
Biochim. Biophys. Acta. 1235, 452-60 (1995).

Pawlak, M., Meseth, U., Dhanapal, B., Mutter, M. & Vogel, H. Template-assembled melittin:Structural and functional characterization of a
designed, synthetic channel-forming protein. Protein Sci. 3,1788-805 (1994).
Fukushima, N., Kohno, M., Kato, T., Kawamoto, S., Okuda, K., Misu, Y. & Ueda, H. Melittin, a metabostatic peptide inhibiting Gs activity. Peptides 19,
811-9 (1998).
Gravitt, K. R., Ward, N. E. & O'Brian, C. A. Inhibition of protein kinase C by melittin: antagonism of binding interactions between melittin and the catalytic domain by active-site binding of MgATP. Biochem. Pharmacol. 47, 425-7
(1994).
Cole, A. M., Weis, P. & Diamond, G. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder.
J. Biol. Chem. 272, 12008-13 (1997).
Pouny, Y., Rapaport, D., Mor, A., Nicolas, P. & Shai, Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with
phospholipid membranes. Biochemistry 31, 12416-23 (1992).
Marri, L., Dallai, R. & Marchini, D. The novel antibacterial peptide ceratotoxin A alters permeability of the inner and outer membrane of
Escherichia coli K-12. Curr. Microbiol. 33, 40-3 (1996).
Yoshida, K., Mukai, Y., Niidome, T., Takashi, C., Tokunaga, Y., Hatakeyama, T. & Aoyagi, H. Interaction of pleurocidin and its analogs with phospholipid
membrane and their antibacterial activity. J. Pept. Res. 57, 119-26 (2001).
Saint, N., Cadiou, H., Bessin, Y. & Molle, G. Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers. Biochim. Biophys. Acta. 1564,
359-64 (2002).
Dathe, M., Nikolenko, H., Meyer, J., Beyermann, M. & Bienert, M. Optimization of the antimicrobial activity of magainin peptides by
modification of charge. FEBS Lett. 501, 146-50 (2001).
Matsuzaki, K., Nakamura, A., Murase, O., Sugishita, K., Fujii, N. & Miyajima, K. Modulation of magainin 2-lipid bilayer interactions by peptide charge.
Biochemistry 36, 2104-11 (1997).
Vaz Gomes, A., de Waal, A., Berden, J. A. & Westerhoff, H. V. Electric potentiation, cooperativity, and synergism of magainin peptides in protein-free
liposomes. Biochemistry 32, 5365-72 (1993).
Yang, L., Weiss, T. M., Lehrer, R. I. & Huang, H. W. Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys. J. 79,
2002-9 (2000).
Tossi, A., Sandri, L. & Giangaspero, A. Amphipathic, alpha-helical
antimicrobial peptides. Biopolymers 55, 4-30 (2000).
Ehrenstein, G. & Lecar, H. Electrically gated ionic channels in lipid bilayers.
Q. Rev. Biophys. 10, 1-34 (1977).
Spaar, A., Munster, C. & Salditt, T. Conformation of peptides in lipid
membranes studied by X-ray grazing incidence scattering. Biophys. J. 87,
396-407 (2004).
He, K., Ludtke, S. J., Huang, H. W. & Worcester, D. L. Antimicrobial peptide
pores in membranes detected by neutron in-plane scattering. Biochemistry 34,
15614-8 (1995).
He, K., Ludtke, S. J., Worcester, D. L. & Huang, H. W. Neutron scattering in
the plane of membranes: structure of alamethicin pores. Biophys. J. 70,
2659-66 (1996).
Cantor, R. S. Size distribution of barrel-stave aggregates of membrane
peptides: influence of the bilayer lateral pressure profile. Biophys. J. 82,
2520-5 (2002).
Matsuzaki, K., Murase, O., Fujii, N. & Miyajima, K. An antimicrobial peptide,
magainin 2, induced rapid flip-flop of phospholipids coupled with pore
formation and peptide translocation. Biochemistry 35, 11361-8 (1996).
Hallock, K. J., Lee, D. K. & Ramamoorthy, A. MSI-78, an analogue of the
magainin antimicrobial peptides, disrupts lipid bilayer structure via positive
curvature strain. Biophys. J. 84, 3052-60 (2003).
Matsuzaki, K. et al. Relationship of membrane curvature to the formation of
pores by magainin 2. Biochemistry 37, 11856-63 (1998).
Matsuzaki, K., Sugishita, K., Harada, M., Fujii, N. & Miyajima, K.
Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim. Biophys. Acta. 1327, 119-30
(1997).
Pouny, Y., Rapaport, D., Mor, A., Nicolas, P. & Shai, Y. Interaction of
antimicrobial dermaseptin and its fluorescently labeled analogues with
phospholipid membranes. Biochemistry 31, 12416-23 (1992).
Shai, Y. Mechanism of the binding, insertion and destabilization of phospho-
lipid bilayer membranes by alpha-helical antimicrobial and cell non-selective
membrane-lytic peptides. Biochim. Biophys. Acta. 1462, 55-70 (1999).
Ladokhin, A. S. & White, S. H. ‘Detergent-like’ permeabilization of anionic
lipid vesicles by melittin. Biochim. Biophys. Acta. 1514, 253-60 (2001).

Bechinger, B. The structure, dynamics and orientation of antimicrobial
peptides in membranes by multidimensional solid-state NMR spectroscopy.
Biochim. Biophys. Acta. 1462, 157-83 (1999).
Gennaro, R. & Zanetti, M. Structural features and biological activities of the
cathelicidin-derived antimicrobial peptides. Biopolymers 55, 31-49 (2000).
Holak, T. A., Engstrom, A., Kraulis, P. J., Lindeberg, G., Bennich, H., Jones, T. A., Gronenborn, A. M. & Clore, G. M. The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical
simulated annealing study. Biochemistry 27, 7620-9 (1988).
Miteva, M., Andersson, M., Karshikoff, A. & Otting, G. Molecular electro-
poration: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin. FEBS Lett. 462, 155-8
(1999).
Chan, D. I., Prenner, E. J., & Vogel, H. J. Tryptophan- and arginine-rich
antimicrobial peptides: Structures and mechanisms of action. Biochim.
Biophys. Acta. 1758, 1184-202 (2006).
Pokorny, A. & Almeida, P.F. Permeabilization of raft-containing lipid
vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides.
Biochemistry 44, 9538-44 (2005).
Yeaman, M. R. & Yount, N. Y. Mechanisms of antimicrobial peptide action
and resistance. Pharmacol. Rev. 55, 27-55 (2003).
Eisenberg, D., Weiss, R. M. & Terwilliger, T. C. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc. Natl. Acad. Sci. U. S. A.
81, 140-4 (1984).
Dathe, M. & Wieprecht, T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells.
Biochim. Biophys. Acta. 1462, 71-87 (1999).
Eisenberg, D. Three-dimensional structure of membrane and surface proteins
Annu. Rev. Biochem. 53, 595-623 (1984).
Dathe, M., Wieprecht, T., Nikolenko, H., Handel, L., Maloy, W. L., MacDonald, D. L., Beyermann, M. & Bienert, M. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS
Lett. 403, 208-12 (1997).
Uematsu, N. & Matsuzaki, K. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. Biophys. J. 79, 2075-83
(2000).
Wieprecht, T., Dathe, M., Epand, R. M., Beyermann, M., Krause, E., Maloy, W. L., MacDonald, D. L. & Bienert, M. Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic,
antibacterial peptides. Biochemistry 36, 12869-80 (1997b).
周宏達「依據雙性螺旋胜肽之各項結構參數設計開發具高度抗菌活性及選
擇性之新穎抗菌胜肽」宜蘭大學生物技術研究所 碩士論文(2007).
Chou, H.T., Kuo, T. Y., Chiang, J. C., Pei, M. J., Yang, W. T., Yu, H. C. Lin, S. B. & Chen, W. J. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int. J. Antimicrob.
Agents. 32, 130-38 (2008).
Zelezetsky, I. & Tossi, A. Alpha-helical antimicrobial peptides--using a sequence template to guide structure-activity relationship studies. Biochim.
Biophys. Acta. 1758, 1436-49 (2006).
Huang, H. W. Action of antimicrobial peptides: Two-state model Biochemistry
39, 8347-52 (2000).
Chen, F. Y., Lee, M. T. & Huang, H. W. Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys. J. 84,
3751-8 (2003).
李明道、黃玉山、鄭有舜、賴英煌、孫亞賢「運用小角度 X-光散射量測溶液中單層生物膜微胞的厚度」財團法人國家同步輻射研究中心;陸軍軍官
學校 83週年校慶基礎學術研討會 物理組研討會論文 (2007).
Chen, F.Y., Lee, M.T. & Huang, H.W. Sigmoidal concentration dependence of
antimicrobial peptide activities: a case study on alamethicin. Biophys. J. 82,
908-14 (2002).
Stewart, J. C. Colorimetric determination of phospholipids with ammonium
ferrothiocyanate. Anal. Biochem. 104, 10-4 (1980).
Lai, Y. H., Sun, Y. S., Jeng, U. S., Lin, J. M., Lin, T. L., Sheu, H. S.,
Chuang, W. T., Huang, Y. S., Hsu, C. H., Lee, M. T., Lee, H. Y., Liang, K. S.,
Gabriel, A. & Koch, M. H. J. An instrument for time resolved and anomalous simultaneous small and wide angle X-ray scattering (SWAXS) at the NSRRC.
J. Appl. Cryst. 39, 871-7 (2006).
Lee, M. T., Hung, W. C., Chen, F. Y. & Huang, H. W. Many-body effect of
antimicrobial peptides: on the correlation between lipid’s spontaneous
curvature and pore formation. Biophys. J. 89, 4006-16 (2005).
Powell, K.T. & Weaver, J.C. Transient aqueous pores in bilayer membranes: A
statistical theory. Bioelectrochem. Bioenerg. 15, 211-27 (1986).
Tieleman DP. The molecular basis for electroporation. BMC Biochem. 5, 10
(2004).
Tarek, M. Membrane electroporation: a molecular dynamics simulation.
Biophys. J. 88, 4045-53 (2005).
Kodama, T., Tomita Y., Koshiyama, K. & Blomley, M.J. Transfection effect of
microbubbles on cells in superposed ultrasound waves and behavior of cavitation
bubble. Ultrasound Med. Biol. 32, 905-14 (2006).
Koshiyama, K., Yano, T. & Kodama, T. Self-organization of a stable pore
structure in a phospholipid bilayer. Phys. Rev. Lett. 105, 018105 (2010).
Sandre, O., Moreaux, L. & Brochard-Wyart, F. Dynamics of transient pores
in stretched vesicles. Proc. Natl. Acad. Sci. U. S. A. 96, 10591-6 (1999).
Karatekin, E., Sandre, O., Guitouni, H., Borghi, N., Puech, P. H. & Brochard-
Wyart, F. Cascades of transient pores in giant vesicles: line tension and
transport. Biophys. J. 84, 1734-49 (2003).
Wang, Z. J. & Frenkel, D. Pore nucleation in mechanically stretched bilayer
membranes. J. Chem. Phys. 123, 154701 (2005).
Lee, M. T., Hung, W. C., Chen F. Y. & Huang, H. W. Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides.
Proc. Natl. Acad. Sci. U. S. A. 105, 5087-92 (2008).
Yang, L., Harroun, T. A., Heller, W. T., Weiss, T. M. & Huang, H. W. Neutron off-plane scattering of aligned membranes. I. Method Of measurement.
Biophys. J. 75, 641-5 (1998).
Perez-Paya, E., Houghten, R. A. & Blondelle, S. E. Determination of the secondary structure of selected melittin analogues with different haemolytic
activities. Biochem. J. 299, 587-91 (1994).
李明道「胜肽在胞膜上形成孔洞的機制」中央大學物理學系 博士論
文 (2004).
Hung , W. C. & Lee, M. T. The interaction of melittin with E. coli membrane: the
role of cardiolipin. Chinese J. Phys. 44, 137-49 (2006).
Niemz, A. & Tirrell D. A. Self-association and membrane-binding behavior of
melittins containing trifluoroleucine. J. Am. Chem. Soc. 123, 7407-13 (2001).
Syvitski, R. T., Burton, I., Mattatall, N. R., Douglas, S. E. & Jakeman, D. L. Structural characterization of the antimicrobial peptide pleurocidin from winter
flounder. Biochemistry 44, 7282-93 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47018-
dc.description.abstract抗菌胜肽在昆蟲、植物及哺乳動物的先天免疫系統及宿主防禦機制上扮演著重要的角色。目前認為,抗菌胜肽造成微生物死亡的機制,多數可能是藉由與微生物細胞膜相互作用後反應引發孔洞形成等幾種穿透機制,來破壞微生物的正常生理。近年來,隨著抗生素過度的濫用,導致微生物抗藥性的迅速增加。因此,發展有效性抗菌胜肽取代抗生素,成為克服微生物抗藥性問題的新型態之治療方式。
我們根據前人設計的人工合成抗菌胜肽,固定長度為20個胺基酸,改變其電荷 (Q)、極性角度 (θ)、疏水性 (H) 及疏水性矩 (MH) 等四種結構性參數 (structural determinants),得到數種有效抗菌胜肽。其中GW-H1(Q=+4、θ=140°、H=-0.115、MH=0.344)及GW-Q4(Q=+4、θ=140°、H=-0.043、MH=0.344),對革蘭氏陽性菌及革蘭氏陰性菌(包括弧菌屬病原菌)擁有最強的抗菌效果及最佳的滲透能力,並且對原核生物的細胞膜有選擇性。而相關的 calcein leakage 與圓二色光譜 (circular dichroism, CD) 實驗結果,則可用來推論 GW-H1與GW-Q4所造成的抗菌能力,應該來自於與細菌細胞膜直接作用時所造成的物質滲漏效果。
為瞭解這些具抗菌效力的人工胜肽GW-H1與GW-Q4如何作用在細菌細胞膜上造成穿透,我們利用DOPC:DOPG (3:1) 之微脂體及多片層脂膜作為細菌細胞膜的模型,並運用生物物理相關技術來量測胜肽在膜上的方位和膜厚度的改變。其中,使用指向性圓二色光譜 (oriented circular dichroism, OCD) 可以觀察到 α 螺旋型胜肽在膜上的方位:若是平行膜面,表示胜肽吸附在膜表面;垂直膜面則表示胜肽插入膜內,吸附於孔洞邊緣。脂膜 X-光片層繞射 (lamellar x-ray diffraction) 是用來測量胜肽造成固定相脂質雙層膜厚度的變化;小角度 X-光散射 (small angle x-ray scattering, SAXS) 則是測量胜肽造成水溶液中單層微脂體 (small unilamellar vesicles, SUVs) 厚度的變化。當以上述方法,觀察人工合成抗菌胜肽 GW-H1、GW-Q4 與天然抗菌胜肽 melittin、pleurocidin 在帶電生物膜上的吸附或插入的情形,並配合磷脂質與胜肽比例 (P/L) 之改變,我們可以清楚討論胜肽的作用方位、生物膜厚度改變的程度、微脂體粒徑的變化,進而推導理解抗菌胜肽作用在生物膜上的特性與穿透的可能機制。
實驗結果顯示,人工抗菌胜肽 GW-H1 及 GW-Q4 迥異於天然抗菌胜肽melittin、pleurocidin,並非以已知的形成孔洞的模式與生物膜作用,反而是不斷吸附在生物膜表面,造成膜厚度持續地下降。粒徑分析則顯示,微脂體沒有破裂或融合的現象。根據文獻上指出關於脂膜的物理性質:脂膜分子會受到熱擾動作用力 (thermal fluctuation force) 的影響,產生暫時性的孔洞 (transient pores)。我們因此推論人工抗菌胜肽 GW-H1、GW-Q4 在與生物膜作用時,可能是逐漸吸附聚集於膜表面的胜肽數目愈來愈多,且膜厚度越趨變薄,促使膜表面張力不斷增加,而產生類似熱擾動的效果,於是膜表面出現暫時性孔洞的頻率變高或孔洞本身打開的幅度變大,終致生物膜的障壁功能暫時喪失,膜內外物質得以彼此交會進出。這應該是對於 calcein leakage 實驗中證明膜內外物質確實有進行交換,但粒徑分析卻又顯示膜結構並未真正大幅改變的較佳解釋。

相對的,已知為形成超環面孔洞模式 (toroidal-pore model) 的 melittin,在本研究中被觀察到具有明顯的吸附插入相的轉變(水平或垂直)。透過測量發現 melittin 在 DOPC/PG 膜上形成孔洞的閾值為 (P/L)* = 1/200,相較文獻中的對於中性生物膜 DOPC之閾值 (P/L)* = 1/99 約小一倍,顯示melittin 相對容易結合在帶負電的 DOPG 生物膜中,並附帶證實了陽離子抗菌胜肽與帶負電荷的細菌細胞膜作用的機制最初是先藉由靜電作用力吸附,方得以引發後續的抑菌反應。此外實驗結果亦顯示 pleurocidin 的作用情況與 melittin 相似,因此我們認為 pleurocidin 可能也以形成孔洞的方式 (pore-formation) 對生物膜進行穿透,此結論亦符合相關文獻中電生理實驗的推論。另外,pleurocidin與細胞膜的作用似乎較 melittin 更強,初步實驗結果顯示細胞膜與 pleurocidin 作用後有導致細胞膜完全破壞的可能。
本研究提供了極為先進的實驗平台,為身為本院藥理毒理傳統卻長期以來不易進一步逼近的生物膜和胜肽(如蛇毒和蜘蛛毒)作用模式細節研究展露了可遵循的法則。多種物理參數的量測推導更具體化了判定生物膜和胜肽反應時作用方式的分類標準,而欲掌握更多的反應中物理化學性質和細節的推導則亦透過同步輻射的高解析光源成為可能。只是關於抗菌胜肽的結構參數與抗菌機制的關聯仍是謎團,我們必須仰賴實驗觀測分類推估,無法從這些參數中直接演繹推論人工抗菌胜肽 GW-H1、GW-Q4 與其他天然抗菌胜肽的抗菌機制之異同,這有待未來更多的研究去瞭解。
zh_TW
dc.description.abstractAntimicrobial peptides (AMPs) play important roles in the host innate defense mechanism in many plants, insects, and mammals. It is believed that AMPs may interact with the microbial membranes and kill the target cells. On the other hands, the extensive use of classical antibiotics has led to the growing emergence of many resistant strains of pathogenic microorganisms in recent years. Therefore, the development of novel therapeutic agents that could overcome the antimicrobial resistance has become a very critical issue.
The mechanism for the aforementioned antimicrobial activity has been considered as the membrane-peptide interactions and the subsequent pore- forming that lead to the permeation of biomembranes. Several models have been proposed according to the membrane structure types during pore-formation: “barrel-stave”, “carpet” and “toroidal-pore”. Based on the previous study of our collaborators, a series of cationic α-helical peptides with 20 amide acids has been designed and synthesized according to four structural determinants: charge, polar angle, hydrophobicity, and hydrophobic moment. Two of such de novo designed AMPs, GW-H1 (Q=+4, θ=140°, H=-0.115, MH=0.344) and GW-Q4 (Q=+4, θ=140°, H=-0.043, MH=0.344), exhibited the most significant antimicrobial activity and selectivity against various Gram-positive and Gram-negative bacteria, including several vibrio strains. Results form the related calcein leakage experiments and circular dichroism spectra are used to infer that the antimicrobial activity of GW-H1 and GW-Q4 should rely on the direct interaction with prokaryotic membranes and the concomitant penetration effect that can lead to the microbial death.
In this study, to distinguish the type of membrane-peptide interactions, which will allow us to deduce the properties of such interaction in detail, and to understand the difference in mechanism between artificial and natural AMPs, we apply DOPC/DOPG (3:1) membranes as a bacterial cell membrane system to investigate the physical factors participating in the interaction. Peptides adopted are GW-H1 and GW-Q4 (artificial); melittin and pleurocidin (natural). Both the lamellae and liposomes were used as (apparatus) platforms for membrane. The biophysical techniques applied include the followings. (i) Oriented circular dichroism (OCD). This is used to monitor the peptide orientation: parallel means surface adsorbed, whereas perpendicular means pore wall attached or membrane integrated. (ii) Lamellar X-ray diffraction (LXD): used to measure the change in thickness of membrane bilayer in solid state. (iii) Small angle X-ray scattering (SAXS): used to measure the change in thickness of membrane bilayer of small unilamellar vesicles (SUVs) in solution. The physical measurements are conducted during experiments via observing the peptide orientations, the change in membrane thickness and the change in size of liposomes, for which all as an individual function of peptide-to-lipid molar ratio (P/L).
The results show that artificial antimicrobial peptide GW-H1 and GW-Q4 behave in a different manner from the natural antimicrobial peptides melittin and pleurocidin. It is indicated that GW-H1 and GW-Q4 adsorbed onto the biomembrane surface continuously and in parallel, instead of attaching perpendicularly in membrane per se. Therefore the membrane becomes thinner and thinner, even without digging a pore. This coincides with the data on particle size measurement from DLS (Dynamic Light Scattering), suggesting the liposome membrane structure has not been seriously interrupted, damaged or deformed. However, the calcein leakage experiments strongly suggested the exchange of materials through membrane. How can we explain this? According to the literatures, noting that the physical properties of lipid membranes, as membranes lipids are getting closer to each other, they will be influenced by the thermal fluctuation force and moving aparts, a condition that may cause the transient pores to occur on the membrane surfaces. We speculate that the synthetic antibacterial peptide GW-H1 and GW-Q4 should be accumulating on the membranes and force the membrane structure to become more fragile, as the surface tension will be increased during the membranes are thinnened. This will probably cause the transient pores to occur by a higher frequency or to a larger extent in size, which is in a similar way as being influenced by thermal fluctuations. This condition may result in the temporary loss of barrier functions of the biomembrane.
In contrast, the natural peptide melittin apparently inserts itself into the membrane as described for the toroidal-pore model. Our results provide clear evidence for such model and working hypothesis, according to the observation for peptide distributions both in parallel and in perpendicular, as well as the change in membrane thickness from both SAXS and LXD data. Besides, the critical concentration for pore-formation (P/L)* of melittin in DOPC/DOPG (3:1) is ~1/200, which is only half value compared with that in pure DOPC (~1/99). This finding is in line with the previous concept that the initial steps of cationic AMPs when binding onto the microbial membrane surface are essentially relying on the electrostatic interactions. In our case, the addition of DOPG into DOPC mixture indeed brings more negative charges to a neutral system. The effect of pleurocidin on membrane is similar to melittin. The pleurocidin may cause the penetration on the microbial membrane by forming pores in toroidal-pore model. This is consistent with the comprehension from electrophysiological data described in literature. Moreover, our preliminary data show that pleurocidin may interact with membranes in an even stronger manner, for which severe disruption of membrane vesicles were observed during experiments, and unexpected huge error bars had to be taken care of.
In the present study, we applied the most advanced synchrotron technology to a local tradition of research, which has been since long excellent but then difficult to explore more in a decent way. That is, an extensive scientific focus on the interactions between toxins/peptides and biomembranes. Biophysical measurements of objective parameters enable the detailed study for the aforementioned topic to be approached in a rigid way. Deduction of the high resolution data from operation of synchrotron light sources indeed sheds lights into this new platform of research. Our studies may even provide a standard procedure in methods and methodology for related membrane-peptide research. However, it is still difficult and complicated to comprehend the derivations directly from the structural determinants in designing artificial peptides to the mechanism categorization. This will rely on further approaches in the near future.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:45:22Z (GMT). No. of bitstreams: 1
ntu-99-R97450015-1.pdf: 3699837 bytes, checksum: 82d00d58efdbac22f05e987b318c7eee (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents致謝………………………………………………………………I
中文摘要…………………………………………………………III
英文摘要…………………………………………………………V
目錄………………………………………………………………VIII
圖目錄……………………………………………………………X
表目錄……………………………………………………………XI
縮寫表……………………………………………………………XII
第一章 前言……………………………………………………1
1-1 抗菌胜肽……………………………………………………1
1-1.1 抗菌胜肽結構分類………………………………………2
1-1.2 Melittin…………………………………………………3
1-1.3 Pleurocidin ……………………………………………4
1-2 抗菌活性機制………………………………………………5
1-2.1 生物膜組成………………………………………………5
1-2.2 抗菌胜肽作用機制………………………………………6
1-2.3 抗菌胜肽作用機制之相關模式…………………………7
1-3 人工合成抗菌胜肽設計與篩選……………………………11
1-3.1 結構參數 (Structural Determinants)………………11
1-3.2 人工合成抗菌胜肽的設計與篩選………………………14
1-4 以生物物理學方法探討抗菌胜肽之作用機制……………16
1-4.1 Thinning Effect 與 Two-State Model………………16
1-4.2 生物物理學方法原理簡介………………………………17
第二章 實驗目的…………………………………………………20
第三章 材料與方法………………………………………………22
3-1 材料………………………………………………………………22
3-2 多片層脂膜的製備………………………………………………22
3-3 指向性圓二色光譜………………………………………………23
3-3.1 硬體與測量……………………………………………………23
3-3.2 數據處理分析…………………………………………………24
3-4 多片層 X-光繞射……….……………………………………….24
3-4.1 硬體與測量………………………………………………………24
3-4.2 數據處理分析……………………………………………………24
3-5 小角度 X-光散射……………………………………………………25
3-5.1 單層微脂體(Small Unilamellar Vesicles, SUVs)的製備…25
3-5.2 微脂體的濃度測定-磷酸含量測定法………………………………26
3-5.3 硬體與測量……………………………………………………………28
3-5.4 數據處理分析………………………………………………………..28
3-6 粒徑測量…………………………………………………………………28
第四章 結果………………………………………………………………….29
4-1 指向性圓二色光譜………………………………………………………29
4-1.1 GW-H1 及 GW-Q4…………………………………………………....29
4-1.2 Melittin………………………………………………………………29
4-1.3 Pleurocidin………………………………………………………….29
4-2 多片層 X-光繞射…....……………………………………………….30
4-2.1 DOPC:DOPG (3:1) 之膜厚度……………………………………....30
4-3 小角度 X-光散射……………………………………………………….30
4-4 粒徑測量…………………………………………………………………30
第五章 討論………………………………………………………………….31
5-1 本篇所用之生物物理學方法技術的辨思………………………………31
5-2 抗菌胜肽 H1、Q4 與 Pleurocidin 在生物膜上可能的穿透機制…32
5-2.1 人工合成抗菌胜肽 H1、Q4 在生物膜上可能的穿透機制………32
5-2.2 天然抗菌胜肽 Pleurocidin 在生物膜上可能的穿透機制…….33
5-3 天然抗菌胜肽 Melittin 在各類磷脂質生物膜的孔洞形成效果.35
5-3.1天然抗菌胜肽 Melittin 對帶負電荷磷脂質生物膜之孔洞形成效果.36
5-3.2天然抗菌胜肽 Melittin 對中性磷脂質生物膜之孔洞形成效果…37
5-4 抗菌胜肽的結構參數與抗菌機制之間可能的關聯性………………….38
第六章 結論與未來展望………………………………………………………39
附錄………………………………………………………………………………55
1.磷脂質的分子式與結構式……………………………………………......55
2.Melittin 對 DOPC、DOPE、DOPG、CL 不同比例之標準化後 OCD 光譜
比較……………………………………………………………………………...58
3.Melittin 對 DOPC、DOPE、DOPG、CL 不同比例之 inserted fraction (Φ)
對 1/(P/L) 作圖………………………………………………………………..58
4. 推論抗菌胜肽作用於生物膜之相關示意圖…………………………………59
參考文獻………………………………………………………………………….60
dc.language.isozh-TW
dc.subject抗菌胜&#32957zh_TW
dc.subject暫時性孔洞zh_TW
dc.subject熱擾動作用zh_TW
dc.subject微脂體zh_TW
dc.subject動態光散射zh_TW
dc.subject小角度 X-光散射zh_TW
dc.subject多片層 X-光繞射zh_TW
dc.subject指向性圓二色光譜zh_TW
dc.subjectantimicrobial peptideen
dc.subjecttransient poreen
dc.subjectthermal fluctuationen
dc.subjectliposomeen
dc.subjectdynamic light scatteringen
dc.subjectsmall angle x-ray scatteringen
dc.subjectlamellar x-ray diffractionen
dc.subjectoriented circular dichroismen
dc.title利用指向性圓二色光譜、多片層 X-光繞射以及小角度 X-光散射等 技術探討人工抗菌胜肽 GW-H1 和 GW-Q4 在生物膜上的穿透機制zh_TW
dc.titleInvestigation of the Artificial Antimicrobial Peptides GW-H1 and GW-Q4 on the Mechanism of Membrane Permeation with Oriented Circular Dichroism (OCD), Lamellar X-ray Diffraction (LXD) and Small Angle X-ray Scattering (SAXS)en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor李明道(Ming-Tao Lee)
dc.contributor.oralexamcommittee陳威戎(Wei-Jung Chen),趙治宇(Chih-Yu Chao),鄭有舜(U-Ser Jeng)
dc.subject.keyword抗菌胜&#32957,指向性圓二色光譜,多片層 X-光繞射,小角度 X-光散射,動態光散射,微脂體,熱擾動作用,暫時性孔洞,zh_TW
dc.subject.keywordantimicrobial peptide,oriented circular dichroism,lamellar x-ray diffraction,small angle x-ray scattering,dynamic light scattering,liposome,thermal fluctuation,transient pore,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2010-08-19
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
3.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved