Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47005
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建彰
dc.contributor.authorChih-Hung Lien
dc.contributor.author李至弘zh_TW
dc.date.accessioned2021-06-15T05:45:05Z-
dc.date.available2015-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-19
dc.identifier.citation第一章參考文獻
[1] T. Gruber et al., Appl. Phys. Lett., 84 (2004),5359.
[2] G. Shula et al.,J.Phy.D :Appl.Phy., 42 (2009),075105.
[3] H.S. Kim, et al., Appl. Phys. Lett., 92, (2008),112108.
[4] H. Endo et al., Appl. Phy. Exp., 84 (2004),5359.
[5] N.W. Emanetoglu et al., Appl. Phys. Lett., 85,(2004),3702.
[6] T. Mokino et al., Appl. Phys. Lett., 92 (2002),7157.
第二章參考文獻
[1] X. Q. Guet et al., Appl. Phys. Lett., 91(2007),022103.
[2] T. Makino et al., Appl. Phys. Lett., 78 (2001),1979.
[3] S. Choopun et al.,Appl. Phys. Lett., 80(2002),1529.
[4] P. Bhattacharya et al.,Appl. Phys. Lett., 83(2003),2010.
[5]Gaurav Shukla , Journal of Physics D: Appl. Phys. ,42(2009)075105.
[6] T. Makino et al., Appl. Phys. Lett., 92 (2002),7157.
[7] http://www.tcd.ie/Physics/People/Charles.Patterson/research_projects/
zinc_cobolt_oxide.php
[8] T. Detchprohm et al., Appl. Phys. Lett., 61(1992),30.
[9] 陳光華、鄧金祥,奈米薄膜技術與應用,台北市:五南,民 94(2005),第120-125 頁.
[10] Yasuo Ohdaira,et al, Appl. Phys. Lett. 86, (2005),051102.
[11] D.M. Bagnall, et al, Appl. Phys. Lett. 70 (1997),2230.
[12] T. C. Zhang et al., Appl. Phys. Lett., 94(2009),113508.
[13] Bhaskar Chandra Mohanty et al., Appl. Phys. Lett., 95 (2009),062103.
[14] K. Tominaga et al., Thin Solid Films., 334 (1998),35.
[15] S.J.Lim et al., Thin Solid Films., 516 (2008),1523.
[16] A.Ohtomo et al., Appl. Phys. Lett., 78 (1999),4008.
[17] J.F. Muth et al,.Mat.Res.Soc.Symp.,617(2000),J6.7.1.
[18] M.Suchea et al., Thin Solid Films, 517 (2008),4303.
[19] J. Zhu et al., Appl. Phys. Lett., 90 (2007),211909.
[20] D.R Sahu et al., Thin Solid Films, 515 (2006),876.
[21] B.P. Zhang et al., Appl. Phys. Lett., 86 (2005),032105.
[22] Y.Y. Kim et al., Thin Solid Films, 516 (2008),5602.
[23] W. Yang et al., Appl. Phys. Lett., 78 (2001),2787.
[24] N.B. Chen et al., Materials Science and Engineering B, 126 (2006),16.
[25] J. Chen et at., J.Phys. :Condens. Matter., 15(2003),L475.
[26] A. Ohtomo et al., Appl. Phys. Lett., 72 (1998),2466.
[27] http://www.geocities.jp/ohba_lab_ob_page/structure6.html
[28] Yuji Matsumoto., Jpn. J. Appl. Phys., 38(1999) L603.
[29] A. K Sharma et al., Appl. Phys. Lett., 75 (1999),3327.
[30] G. J. Exarhos et al., Thin Solid Films, 270 (1995),27.
[31] S. T. Tan et al., Appl. Phys. Lett., 98 (2005),013505.
[32] Y. Ryu et al., Appl. Phys. Lett., 88 (2006),241108.
[33] Y. R. Ryu et al., Appl. Phys. Lett., 90 (2007),131115.
[34] W. Z. Xu et al., Appl. Phys. Lett., 88 (2006),173506.
[35] S. Mridha et al., Appl. Phys. Lett., 78 (2007),083102.
[36] C. H. Park et al., Appl. Phys. Lett., 78 (2003),3973.
[37] C.-H. Choi et al., J. Cryst. Growth, 283(2005),170 .
[38] Z.G. Ju et al., Appl. Phys. Lett., 94 (2009),101902.
[39] B. Abeles et al., Phys. Rev. Lett., 21 (1983),2003.
[40] X. H. Pan et al., Appl. Phys. Lett., 107 (2010),033102.
[41] 呂受書,受分子束磊晶成長電制吸收光調變器結構.',國立中山大學光電研究所碩士論文(2003)
[42] T. Makino., Appl. Phys. Lett., 77 (2000),975.
[43] M. Al-Suleiman., Appl. Phys. Lett., 91 (2007),080911.
[44] T. Gruber., Appl. Phys. Lett., 84 (2004),5359 .
[45] T. Maemoto et al., Thin Solid Films, 486 (2005),174.
[46] P. Misra et al., Appl. Phys. Lett., 89 (2006),161912.
[47] A. Ohtomo et al., Appl. Phys. Lett.,75 (1999), 980.
[48] T. Makino et al., Appl. Phys. Lett.,93 (2003), 5929.
[49] http://plasmaclean.blogspot.com/2009/07/blog-post_10.html
[50]http://crm.itis.org.tw/pub/931/93/13/BookFile/59151396.PDF
[51] http://www.etafilm.com.tw/PVD_Sputtering_Deposition_ch.html
[52] http://plasmaclean.blogspot.com/2009/07/blog-post_10.html
[53] http://tw.myblog.yahoo.com/lifung-biz/article?mid=-2&next
第三章參考文獻
[1] 楊明輝,透明導電膜,第一版,2006年10月
[2] http://elearning.stut.edu.tw/caster/3/no4/4-1.htm
[3] 凌永健,離子束質譜術的原理與應用,科儀新知 1990, 12(2), 20-37.
[4]http://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/ equipment/EM/FE-SEM/FE-SEM005.pdf
[5] http://materialscience.uoregon.edu/ttsem/SEMbasics.html
[7]林智仁,“場發射穿透式電子顯微鏡簡介.” 工業材料雜誌 201期 92年9月
[8] http://universe-review.ca/R11-13-microscopes.htm
[9] 林建霖,“以有機化學氣相沉積法成長m平面氮化銦鎵/氮化鎵量子阱之光學性特性.',國立中山大學材料科學研究所碩士論文(2003)
[10] J.M.Mares et al.,J.Mater.Res.,25(2010),751.
[11] 洪聖楠,“鋁摻雜對Heusler-type Fe2VSi合金之結構及熱電性質影響.',國立中山大學物理研究所碩士論文(2005)
第四章參考文獻
[1] A.Ohtomo et al., Appl. Phys. Lett., 78 (1999),4008.
[2]J.M.Mares et al., J.Mater.Res.,25(2010),751.
[3]F.K.Shan et al., J.Appl.Phy.,95(2004)4772.
[4]Y.Y.Kim et al., Thin Solid Films.,516(2008)5602.
[5]Z.G.Ju et al., Appl. Phys. Lett., 94(2009),101902.
[6]洪聖楠,“鋁摻雜對Heusler-type Fe2VSi合金之結構及熱電性質影響. ', 國立中山大學物理研究所碩士論文(2005).
[7]K. Kuriyama et al., Phys. Rev. B., 48(1993)2781.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47005-
dc.description.abstract本論文主要利用射頻磁控濺鍍(Radio frequency magnetron sputter)在室溫下成長ZnO、Mg0.4Zn0.6O及Mg0.2Zn0.8O薄膜及Mg0.4Zn0.6O/ZnO超晶格結構於矽晶圓及石英玻璃基板上,透過二次離子質譜儀(SIMS)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、穿透頻譜(Transmission spectrum)、X光繞射(XRD)及光激螢光光譜(PL)等實驗對材料性質進行量測及研究。
  由二次離子質譜儀量測,得知Mg0.4Zn0.6O薄膜成分,與原靶材相近,無成分變化的問題。對其進行在氮氣下600℃及800℃退火後,則產生了立方結構的氧化鋅鎂析出。此析出物可由SEM之結果觀察到,也表現在XRD之圖譜上。由穿透光譜所得到原始Mg0.4Zn0.6O之光學能隙(Optical Bandgap)大約為3.95eV,而在800℃退火之後 Mg0.4Zn0.6O之光學能隙有下降之趨勢,而在長時間退火後光學能隙趨近於ZnO。並且長時間退火後造成薄膜厚度下降使穿透率大幅上升,此一效應在600℃退火下並不明顯。另外Mg0.2Zn0.8O方面,800℃長時間退火下一樣會造成整體厚度下降,但幅度較Mg0.4Zn0.6O來的小,材料經長時間退火後之光學能隙也會趨近於ZnO。
  接著成長不同單層厚度[ZnO/Mg0.4Zn0.6O]2.5之超晶格結構量測其穿透光譜,單層厚度較薄的樣品在波長200~500nm區間,可發現兩個明顯的吸收波段,分別為ZnO及Mg0.4Zn0.6O所造成。而在退火後,吸收邊界退化成一個,計算後之光學能隙值則略高於ZnO,因有部分鎂擴散入ZnO所致。
  而對不同厚度下的高缺陷密度的超晶格結構進行光激螢光光譜量測,觀察到量子侷限效應(Quantum confinement effect)的現象。為了改善濺鍍製程下的超晶格結構之品質,改利用原子層沉積法(Atomic layer deposition, ALD)於基板沉積10nm厚之ZnO種子層(Seeding Layer),再於上方成長超晶格結構。由光激螢光光譜之波峰半高寬分析,得知此種子層確實減少了上方超晶格的缺陷密度並改善了上方的超晶格結構品質。
zh_TW
dc.description.abstractWe studied ZnO, Mg0.4Zn0.6O, Mg0.2Zn0.8O thin films, as well as Mg0.4Zn0.6O/ZnO superlattice deposited on silicon wafer and quartz glass substrates at room temperature using radio frequency magnetron sputtering technique. The material properties were characterized by SIMS, SEM, TEM, transmission spectrum, XRD and PL.
From the results of SIMS measurement, the content of Mg0.4Zn0.6O thin film was close to that of the target. After annealing at 600 oC and 800 oC in N2, the cubic MgZnO precipitates in Mg0.4Zn0.6O films. The cubic precipitates were observed by the SEM; in addition, the XRD patterns also revealed the diffraction peaks of cubic MgZnO precipitates. The optical bandgap of as-deposited Mg0.4Zn0.6O, calculated from the transmission spectrum, was approximately 3.95 eV. When annealed at 800 oC, the optical bandgap approached to that of ZnO after long time annealing due to the decrease of the film thickness by evaporation. This evaporation of film thickness also caused the increase of transmittance. By contrast, this increase of transmittance after long time anneal did not occur at 600 oC. As for Mg0.2Zn0.8O films annealed at 800 oC, we also observed the decrease of film thickness, but the amount of thickness reduction was not as large as that of Mg0.4Zn0.6O films. The bandgap of Mg0.2Zn0.8O also approaches to that of ZnO after long time annealing.
We then studied [ZnO/Mg0.4Zn0.6O]2.5 superlattice of various thickness per layer. The transmission spectra of samples with thinner layer thickness reveal two absorption edges between the wavelengths of 200 nm and 500 nm, which are resulted from the partial absorption of ZnO and Mg0.4Zn0.6O layers. After long time annealing treatment at 800 oC, the absorption edge degenerated to one with an optical bandgap a little higher than ZnO, caused by the diffusion of Mg into ZnO layer and evaporation of the films. On the other hand, the transmission spectra remain almost the same when the superlattice is subjected to a heating process of 600 oC, indicating the evaporation and precipitation were suppressed. The PL peaks for superlattice shifted as the thickness of superlattice layer changed, indicating the quantum confinement effect. To improve the quality of superlattice structures, we adopted a 10 nm ZnO seeding layer by atomic layer deposition prior to the deposition of the superlattice structure by rf-sputtering. From the FWHM of PL peak, the seeding layer improved the quality of rf-sputtered superlattice structures.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:45:05Z (GMT). No. of bitstreams: 1
ntu-99-R97543052-1.pdf: 4848586 bytes, checksum: c128e48159cb939884b279bca5b2b9eb (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目 錄
口試委員會審定書.……………………………………………………Ι
誌謝……….……………………………………………………………………………Ⅱ
中文摘要….……………………………………………………………………………Ⅲ
英文摘要….……………………………………………………………………………Ⅳ
目錄……..……………………………………………………………………………V
圖目錄…………………………………………………………………VII
表目錄……………………………………………………………………X
第一章 緒論……………………………………………………………1
1.1寬能隙半導體…………………………………………………………1
1.2研究目的……………………………………………………………1
1.3章節介紹……………………………………………………………2
參考文獻…………………………………………………………………2
第二章 基本原理與文獻回顧…………………………………………3
2.1氧化鋅………………………………………………………………3
2.2氧化鋅鎂……………………………………………………………6
2.3 超晶格……………………………………………………………11
2.4量子侷限效應……………………………………………………12
2.5電漿形成原理……………………………………………………14
2.6濺鍍原理…………………………………………………………14
2.7薄膜成長機制……………………………………………………17
參考文獻………………………………………………………………18
第三章 實驗方法與流程……………………………………………20
3.1陶瓷靶材製備………………………………………………………20
3.2基板清洗……………………………………………………………20
3.2.1玻璃基板清理法之一……………………………………………20
3.2.2玻璃基板清理法之二……………………………………………20
3.2.3矽晶圓清理方式…………………………………………………21
3.3濺鍍儀器及濺鍍流…………………………………………………21
3.4原子層沉積…………………………………………………………22
3.5熱退火處理…………………………………………………………23
3.6量測儀器及原理……………………………………………………23
3.6.1厚度量測…………………………………………………………23
3.6.2穿透光譜量測……………………………………………………24
3.6.3 X射線繞射………………………………………………………24
3.6.4二次離子質譜儀…………………………………………………25
3.6.5掃描式電子顯微鏡………………………………………………26
3.6.6穿透式電子顯微鏡………………………………………………27
3.6.7能量散射光譜儀…………………………………………………28
3.6.8光致螢光光譜……………………………………………………28
參考文獻………………………………………………………………29
第四章 實驗結果與討論……………………………………………30
4.1單層薄膜分析………………………………………………………30
4.1.1二次離子質譜儀…………………………………………………30
4.1.2 Mg0.4Zn0.6O及Mg0.2Zn0.8O之X光繞射………………………31
4.1.3掃描式電子顯微鏡………………………………………………37
4.1.4穿透光譜及光學能隙……………………………………………39
4.2多層膜分析…………………………………………………………44
4.2.1掃描式電子顯微鏡………………………………………………44
4.2.2穿透式電子顯微鏡………………………………………………45
4.2.3二次離子質譜儀…………………………………………………46
4.3.4穿透光譜及光學能隙…………………………………………47
4.3.5光致螢光光譜……………………………………………………51
參考文獻………………………………………………………………55
第五章 結論與未來工作……………………………………………56
5.1結論…………………………………………………………………56
5.1未來工作……………………………………………………………57
dc.language.isozh-TW
dc.subject氧化鋅鎂zh_TW
dc.subject超晶格zh_TW
dc.subject氧化鋅zh_TW
dc.subject退火zh_TW
dc.subject光學能隙zh_TW
dc.subjectSuperlatticeen
dc.subjectOptical bandgapen
dc.subjectannealen
dc.subjectZnOen
dc.subjectMgZnOen
dc.title磁控濺鍍高缺陷密度之氧化鋅/氧化鋅鎂超晶格之研究zh_TW
dc.titleThe Study of Highly Defective ZnO/Mg0.4Zn0.6O Superlattice
Made by RF Magnetron Sputter
en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊木榮,陳敏璋,陳奕君,吳育任
dc.subject.keyword氧化鋅,氧化鋅鎂,超晶格,退火,光學能隙,zh_TW
dc.subject.keywordZnO,MgZnO,Superlattice,anneal,Optical bandgap,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2010-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
4.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved