Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46951
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor許永真(Yung-Jen Hsu)
dc.contributor.authorGu-Yuan Linen
dc.contributor.author林谷原zh_TW
dc.date.accessioned2021-06-15T05:43:55Z-
dc.date.available2010-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-19
dc.identifier.citation[1] R. Aipperspach, E. Cohen, and J. Canny. Modeling human behavior from simple sensors in the home. In 4th International Conference, PERVASIVE 2006, Dublin, Ireland, May 7-10, 2006. Proceedings, volume 3968 of Lecture Notes in Computer Science, pages 337–348. Springer Berlin / Heidelberg, May 2006.
[2] M. Berenguer, M. Giordani, F. Giraud-By, and N. Noury. Automatic detection of activities of daily living from detecting and classifying electrical events on the residential power line. In e-health Networking, Applications and Services, 2008. HealthCom 2008. 10th International Conference on, pages 29–32, 2008.
[3] M. Berges, E. Goldman, H. Matthews, and L. Soibelman. Learning Systems for Electric Consumption of Buildings. In Computing in Civil Engineering: Proceedings of the 2009 ASCE International Workshop on Computing in Civil Engineering: June 24-27, 2009, Austin, Texas, page 1. Amer Society of Civil Engineers, June 2009.
[4] J. Carmichael. Non-intrusive appliance load monitoring system. Epri journal, Electric Power Research Institute, pages 45–47, September 1990.
[5] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
[6] G. Cohn, S. Gupta, J. Froehlich, E. Larson, and S. N. Patel. Gassense: Appliance-level, single-point sensing of gas activity in the home. In Pervasive, pages 265–282, 2010.
[7] S. Darby. The effectiveness of feedback on energy consumption. A Review for DEFRA of the Literature on Metering, Billing and direct Displays, 2006.
[8] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousvalued attributes for classiàcation learning. In Thirteenth International Joint Conference on Artificial Intelligence, volume 2, pages 1022–1027. Morgan Kaufmann Publishers, 1993.
[9] J. Fogarty, C. Au, and S. E. Hudson. Sensing from the basement: a feasibility study of unobtrusive and low-cost home activity recognition. In UIST, pages 91–100, 2006.
[10] A. Graps. An introduction to wavelets. IEEE Computational Science & Engineering, 2 (2):50–61, 1995.
[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and H. Ian. The weka data mining software: An update, 2009. Software available at http://www.cs.waikato.ac.nz/ml/weka/.
[12] G. W. Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80(12):1870–1891, 1992.
[13] D. Hu and Q. Yang. Cigar: Concurrent and interleaving goal and activity recognition. In Proceedings of the Twenty-Third AAAI Conference on Artiàcial Intelligence (AAAI), pages 1363–1368, 2008.
[14] S. Intille, K. Larson, E. Tapia, J. Beaudin, P. Kaushik, J. Nawyn, and R. Rockinson. Using a live-in laboratory for ubiquitous computing research. Pervasive Computing, pages 349–365, 2006.
[15] M. Ito, R. Uda, S. Ichimura, K. Tago, T. Hoshi, and Y. Matsushita. A method of appliance detection based on features of power waveform. In Applications and the Internet, 2004. Proceedings. 2004 International Symposium on, pages 291–294, 2004.
[16] I. Kaplan. Haar Wavelets in Java, November 2001. Software available at http://www.bearcave.com/software/java/wavelets/haar.html.
[17] T. Kato, H. Cho, D. Lee, T. Toyomura, and T. Yamazaki. Appliance Recognition from Electric Current Signals for Information-Energy Integrated Network in Home Environments. Ambient Assistive Health and Wellness Management in the Heart of the City, 5597:150–157, June 2009.
[18] Y. Kim, T. Schmid, Z. Charbiwala, and M. Srivastava. ViridiScope: design and implementation of a fine grained power monitoring system for homes. In Proceedings of the 11th international conference on Ubiquitous computing, pages 245–254. ACM, 2009.
[19] N. Kushiro, M. Katsukura, M. Nakata, and Y. Ito. Non-intrusive human behavior monitoring sensor for health care system. Human Interface and the Management of Information. Information and Interaction, 5618:549–558, July 2009.
[20] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In MACHINE LEARNING INTERNATIONAL WORKSHOP THEN CONFERENCE-, pages 282–289. Citeseer, 2001.
[21] Y.-H. Lee. Context-aware energy consumption analysis and energy savings system. Master’s thesis, Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, July 2009.
[22] Lian. Chatting activity recognition using factorial conditional random fields with iterative classification. Master’s thesis, Department of Computer Science and Information Engineering College of Electrical Engineering and Computer Science National Taiwan University, June, 2008.
[23] L. Liao, D. Fox, and H. Kautz. Hierarchical conditional random fields for GPS-based activity recognition. Robotics Research, 28:487–506, 2007.
[24] T. Onoda, G. R‥atsch, and K. M‥uller. Applying support vector machines and boosting to a non-intrusive monitoring system for household electric appliances with inverters. In Proc. of NC’ 2000, 2000.
[25] S. Patel, M. Reynolds, and G. Abowd. Detecting human movement by differential air pressure sensing in hvac system ductwork: An exploration in infrastructure mediated sensing. In 6th International Conference, Pervasive 2008 Sydney, Australia, May 19-22, 2008 Proceedings, volume 5013 of Lecture Notes in Computer Science, pages 1–18. Springer Berlin / Heidelberg, May 2008.
[26] S. Patel, T. Robertson, J. Kientz, M. Reynolds, and G. Abowd. At the flick of a switch: Detecting and classifying unique electrical events on the residential power line (nominated for the best paper award). In 9th International Conference, UbiComp 2007, Innsbruck, Austria, September 16-19, 2007. Proceedings, volume 4717 of Lecture Notes in Computer Science, pages 271–288. Springer Berlin / Heidelberg, September 2007.
[27] S. N. Patel, K. N. Truong, and G. D. Abowd. Powerline positioning: A practical subroom-level indoor location system for domestic use. In Ubicomp 2006, volume 4206 of Lecture Notes in Computer Science, pages 441– 458. Springer Berlin / Heidelberg, September 2006.
[28] L. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. In Proceedings of the 1989 IEEE International Conference (IEEE 1989), volume 77, pages 257–286, 1989.
[29] T. Saitoh, Y. Aota, T. Osaki, R. Konishi, and K. Sugahara. Current Sensor based Nonintrusive Appliance Recognition for Intelligent Outlet. In ITC-CSCC 2008, 2008.
[30] H. Serra, J. Correia, A. Gano, A. de Campos, and I. Teixeira. Domestic power consumption measurement and automatic home appliance detection. In Intelligent Signal Processing, 2007 IEEE International Workshop on, pages 128–132, 2005.
[31] C. Sutton and A. McCallum. An Introduction to Conditional Random Fields for Relational Learning. Introduction to statistical relational learning, page 93, 2007.
[32] C. Sutton, A. McCallum, and K. Rohanimanesh. Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data. The Journal of Machine Learning Research, 8:693–723, 2007.
[33] E. Tapia, S. Intille, and K. Larson. Activity recognition in the home using simple and ubiquitous sensors. In Second International Conference, PERVASIVE 2004, Linz/Vienna, Austria, April 21-23, 2004. Proceedings, volume 3001 of Lecture Notes in Computer Science, pages 158–175. Springer Berlin / Heidelberg, March 2004.
[34] D. Vail, M. Veloso, and J. Lafferty. Conditional random fields for activity recognition. In Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems, page 235. ACM, 2007.
[35] T. van Kasteren, A. Noulas, G. Englebienne, and B. Kr”ose. Accurate activity recognition in a home setting. In Proceedings of the 10th international conference on Ubiquitous computing, pages 1–9. ACM, 2008.
[36] H. Wallach. Efàcient training of conditional random fields. Master’s thesis, University of Edinbergh, 2002.
[37] H. Wallach. Conditional random fields: An introduction. Technical report, Department of Computer and Information Science, University of Pennsylvania, 2004.
[38] T.-y. Wu, C.-c. Lian, and J. Y.-j. Hsu. Joint recognition of multiple concurrent activities using factorial conditional random fields. In C. Geib and D. Pynadath, editors, 2007 AAAI Workshop on Plan, Activity, and Intent Recognition, Menlo Park, California, July 2007. AAAI Press. Technical Report WS-07-09.
[39] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief propagation and its generalizations. In Exploring Artificial Intelligence in the New Millennium, pages 239–269. Morgan Kaufmann, 2002.
[40] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-energy approximations and generalized belief propagation algorithms. In Proceedings of the 2005 IEEE Transactions on Information Theory, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46951-
dc.description.abstract住家提供一個安全與舒適的環境讓人類可以在其中學習、休憩、通訊與遊樂。隨著家電產品的進步與生活品質的重視,住家的電器設備愈來愈多樣,家中的每個成員的用電量也隨之愈來愈高。家電的便利性與自動化,則造成愈來愈多使用者不重視用電習慣,甚至常常浪費能源而不自知。此外,由於現代的家庭生活中,大部份的居家活動皆與電器使用息息相關,這也顯示了利用電器運作狀態進一步推論居家活動之可行性。
我提出一套雙層方法架構,其以不打擾居住者之舒適度為前提,僅安裝迴路型電力計於家中電盤量測各迴路用電資訊,藉此監測家中各電器使用狀態並進一步推論使用者正在進行之並行活動(Concurrent activities)。利用以上兩者資訊可為家庭耗電情況進行分析,並提供更加有效與確實的節能服務。但實作此架構有兩個困難之處,首先,當有多種電器運作組合之總用電量非常相近時,僅根據用電波形容易造成誤判;再者,我們也需要證明僅採用電器使用狀態來推論多重並行活動是可行的。
針對第一個挑戰,我提出使用「階乘式條件隨機場模型」(Factorial Conditional Random Fields)以涵蓋多重電器使用狀態之同步關係(Co-temporal Relationship)加以區分多種相近總用電量之電器運作狀態組合;而針對第二個挑戰,除了同樣利用「階乘式條件隨機場模型」之外,並增加考慮先前電器狀態變化關係(Pre-local Relationship)以提升系統辨識並行活動之能力。
進行實驗時,於實驗室環境與真實個人宿舍布建電力計蒐集用電資訊與活動標記,以比較「階乘式條件隨機場模型」與「平行化條件隨機場」(Parallel Conditional Random Fields)及其他常用分類器(Classifiers)對於電器狀態監測與並行活動辨識之準確性,其中包括與「簡易貝氏分類器」(Naive Bayes)、「AdaBoost分類器」以及「支援向量機」(Support Vector Machine)之比較。實驗結果顯示,「階乘式條件隨機場模型」於以上兩種環境的電器監測實驗當中,皆獲得最高之聯合辨識率(Joint Accuracy),如此驗證各電器使用之同步關係可幫助提升電器監測準確率;於真實宿舍環境中,雖然「階乘式條件隨機場模型」之辨識結果不如「支援向量機」,但藉由調整參考先前電器狀態變化之事件個數,可知向前參考多個歷史電器狀態變化可大幅提升並行活動之辨識能力,並得到98.35%之聯合辨識率,顯示了系統具有高度可行性。
zh_TW
dc.description.abstractWith the innovation of appliances and the emphasis on the quality of life, the variety of appliances is increasing, which also results the increment of energy consumption. Due to the convenience and automation of appliances, residents are usually unaware of the waste of electricity. On the other hand, since most home activities are related to the use of appliances, this exhibits the possibility of using appliance operating states to further infer home activities.
I proposes a 2-layer framework which use the a non-intrusive way to install power meters to measure circuit-level power consumption and then use such consumption to monitor the appliance states and take one step ahead to recognize concurrent home activities. We can utilize such information to analyze the use of electricity and further provide more effective and practical power-saving services. However, there are two challenges for the implementation of the framework. First, when there are different appliance combinations consuming similar total power loads, distinguishing them only based on the power loads is easy to make erroneous prediction. Second, we want to verify the feasibility of just taking appliance states to infer concurrent activities.
To overcome the first challenge mentioned above, I advocate using the Factorial Conditional Random Fields(FCRFs) to accommodate the co-temporal relationships among multiple appliances and to discriminate those different appliance combinations with similar total power consumption. For the second challenge, I also employ FCRFs and additionally consider the pre-local relationships among the previous appliance state-change events to improve the capability of identifying concurrent activities.
In both a laboratory and a practical dormitory environment, I deploy power meters to measure the circuit-level power consumption and collect the annotations of activities for the comparisons of recognition accuracy between FCRFs, PCRFs, and other commonly used classiàers, including Naive Bayes, AdaBoost, and Support Vector Machine(SVM).
The experimental results of appliance recognition show that FCRFs has the highest joint accuracy in both environments, which demonstrates that the co-temporal relationships are helpful. On the other hand, in activity recognition, despite FCRFs perform badly than SVM in a real environment, the results still show that considering pre-local features dramatically improves the recognition accuracy. Furthermore, the best joint accuracy obtained from SVM is 98.35%, which demonstrates that the system has great feasibility in practical home environments.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:43:55Z (GMT). No. of bitstreams: 1
ntu-99-R97922131-1.pdf: 14951276 bytes, checksum: 25fbf197d37f666f94466f97525f9252 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAbstract i
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Appliance Monitoring . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Activity recognition . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Appliance States Recognition . . . . . . . . . . . . . . . . . . 3
1.2.2 Concurrent Activity Recognition . . . . . . . . . . . . . . . . 4
1.3 Problem Deànition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Appliance States Recognition . . . . . . . . . . . . . . . . . . 6
1.3.2 Concurrent Activity Recognition . . . . . . . . . . . . . . . . 8
1.3.3 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Chapter 2 Related Work 13
2.1 Appliance State Recognition . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Utilizing Individual Appliance Properties . . . . . . . . . . . . 13
2.1.2 Utilizing Electric Signal from Existing Power Lines . . . . . . 14
2.2 Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Ubiquitous Sensor Deployment . . . . . . . . . . . . . . . . . 17
2.2.2 Home Existing Infrastructures . . . . . . . . . . . . . . . . . . 18
Chapter 3 Model Structures 21
3.1 Appliance State Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1 Notation Deànition . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Parallel Conditional Random Fields . . . . . . . . . . . . . . 27
3.1.3 Factorial Conditional Random Fields . . . . . . . . . . . . . . 35
3.2 Activity Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1 Notation Deànition . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Parallel Conditional Random Fields . . . . . . . . . . . . . . 46
3.2.3 Factorial Conditional Random Fields . . . . . . . . . . . . . . 52
Chapter 4 Data Processing and Feature Extraction 57
4.1 Appliance State Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.1 Sliding window . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Activity Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 State-Change Events . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 65
Chapter 5 Experimental Design and Evaluation 67
5.1 Power Meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Laboratory Environment . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Real Home Environment . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . 88
Chapter 6 Conclusion and Future Work 97
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1.1 Appliance State Layer . . . . . . . . . . . . . . . . . . . . . . 98
6.1.2 Activitiy Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Bibliography 100
dc.language.isoen
dc.subject活動辨識zh_TW
dc.subject階乘式條件隨機場模型zh_TW
dc.subject平行化條件隨機場zh_TW
dc.subject非侵入zh_TW
dc.subject電器辨識zh_TW
dc.subjectNon-intrusiveen
dc.subjectActivity Recognitionen
dc.subjectAppliance Recognitionen
dc.subjectFactorial Conditional Random Fieldsen
dc.subjectParallel Conditional Random Fieldsen
dc.title使用迴路用電資訊進行非侵入式電器狀態監測與並行活動辨識zh_TW
dc.titleNon-intrusive Appliance Monitoring and Concurrent Activity Recognition from Circuit-Level Power Consumptionen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李育杰,蔡宗翰,梁敏雄
dc.subject.keyword階乘式條件隨機場模型,平行化條件隨機場,非侵入,電器辨識,活動辨識,zh_TW
dc.subject.keywordFactorial Conditional Random Fields,Parallel Conditional Random Fields,Non-intrusive,Appliance Recognition,Activity Recognition,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2010-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
14.6 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved