Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46921
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李允中
dc.contributor.authorWen-Tse Yangen
dc.contributor.author楊文策zh_TW
dc.date.accessioned2021-06-15T05:43:21Z-
dc.date.available2011-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-20
dc.identifier.citation1. 行政院農委會農糧署 (AFA)。2009。品質資料庫。台北:行政院農委會農糧署。網址: http://agrapp.coa.gov.tw/RICE/index.htm。上網日期:2009-10-11。
2. 翁愫慎。2005。穀物衛生安全檢驗。出自”台灣農家要覽•農作篇”。農業委員會臺灣農家要覽增修訂三版策劃委員會主編,37。台北市:行政院農業委員會。
3. 賴威宏。1992。同軸線反射法在農產品介電性質測定之應用。碩士論文。台北:台灣大學農業機械系工程學研究所。
4. 盧福明。1986。農產品加工工程學。初版,161-162。台北:茂昌。
5. Alderton, G., N. Snell. 1970. Chemical states of bacterial spores: heat resistance and its kinetics at intermediate water activity. Applied Microbiology 19: 565-572.
6. Birla, S. L., S. Wang, J. Tang, and G. Tiwari. 2008. Characterization of radio frequency heating of fresh fruits influenced by dielectric properties. Journal of Food Engineering 89: 390-398.
7. Brown, G. H., C. N. Hoyler and R. A. Bierwirth. 1947. Theory and application of radio-frequency heating. New York: Van Nostrand Co.
8. Berube, D., F. M. Ghannouchi, and P. Savard. 1996. A comparative study of four open-ended coaxial probe models for permittivity measurements of lossy dielectric biological materials at microwave frequencies. IEEE Transactions on Microwave Theory and Techniques 44(10): 1928-1934.
9. Canadian Grain Commission. 2009. Protection of farm-stored grains, oilseeds and pulses from insects, mites and moulds. Canada: Canadian Grain Commission. Available at: grainscanada.gc.ca/storage-entrepose/aafc-aac/pfsg-pgef-6-eng.htm. Accessed 3 July 2009.
10. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan and V. K. Varadan. 2004. Microwave electronics: measurement and materials characterization, 142-146. England: John Wiley & Sons Ltd.
11. Colpitts, B. G., Y. Pelletier, and D. Sleep. 1993. Lethal energy densities of the Colorado potato beetle and potato plant at 2450 MHz. J. Microwave Power & Electromagn. Energy 28: 132-139.
12. Debye, P. 1929. Polar Molecules. New York: Chemical Catalogue.
13. Erickson, C. J. 1995. Handbook of Electrical Heating for Industry. New York: The Institute of Electrical and Electronics Engineers, Inc.
14. Jones, V. M. and B. C. Waddell. 1997. Effect of hot water on mortality of Cydia pomonella (Lepidoptera: Tortricidae). Journal of Economic Entomology 90: 1357–1359.
15. Li, C. C. and K. M. Chen. 1995. Determination of electromagnetic properties of materials using flanged open-ended coaxial probe–full-wave analysis. IEEE Transactions on Instrumentation and Measurement 44: 19-27.
16. Metaxas, A. C. 1996. Foundations of Electroheat- A unified approach, 41-44. England: John Wiley & Sons Ltd.
17. Metaxas, A. C. and R. Meredith. 1983. Industrial microwave heating. Peter Peregrinus: Stevenage.
18. Mitcham, E. J., R. H. Veltman, X. Feng, E. de Castro, J. A. Johnson, T. L. Simpson, W. V. Biasi, S. Wang, and J. Tang. 2004. Application of radio frequency treatments to control insects in in-shell walnuts. Postharvest Biol. Technol. 33: 93-100.
19. Nelson, S. O. and W. K. Whitney. 1960. Radio-frequency electric fields for stored grain insect control. Transactions of the ASAE 3(2): 133-137, 144.
20. Nelson, S. O. and L. F. Charity. 1972. “Frequency dependence of energy absorption by insects and grain in electric field.” Transactions of the ASAE, 15(6): 1099–1102.
21. Nelson, S. O. and L. E. Stetson. 1976. Frequency and Moisture Dependence of the Dielectric Properties of Hard Red Winter Wheat. J. Agric. Eng. Res. 21: 181-192.
22. Nelson, S. O. and T. S. You, 1990. Use of dielectric mixture equations for estimating permittivities of solids from data on pulverized samples. In “Physical Phenomena in Granular Materials”, ed. G. D. Cody, T. H. Geballe, and P. Sheng. Materials Res. Soc. Symp. Proc., 195: 295-300. Pittsburgh, PA: Materials Research Society.
23. Nelson, S. O. 1996. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Transactions of the ASAE, 39(4): 1475-1484.
24. Nelson, S. O., P. G.. Bartley, Jr., and K. C. Lawrence. 1997. Measuring RF and Microwave permittivities of adult rice weevils. IEEE transactions on instrumentation and measurement, 46(4): 941-946.
25. Neophytou, R. I., and A. C. Metaxas. 1997. Characterisation of radio frequency heating systems in industry using a network analyzer. IEE Proceedings-Science Measurement and Technology 144(5): 215-222.
26. Noh, S. H. and S. O. Nelson. 1989. Dielectric Properties of Rice at Frequencies from 50 Hz to 12 GHz. Trans. ASAE 32(3): 991-998.
27. Orfeuil, M. 1987. Electric Process Heating, 519. Columbus, OH: Battelle Memorial Institute.
28. Pan, Z., R. Khir, L. D. Godfrey, R. Lewis, J. F. Thompson, and A. Salim. 2008. Feasibility of simultaneous rough rice drying and disinfestations by infrared radiation heating and rice milling quality. Journal of Food Engineering 84: 469-479.
29. Prasad, A., and P. N. Singh. 2007. A new approach to predicting the complex permittivity of rice. Transaction of the ASABE 50(2): 573-582.
30. Rao, N. N. 2004. Elements of Engineering Electromagnetics. 6th ed., 600-623. New Jersey: Person Prentice Hall.
31. Stratton, J. A. Electromagnetic theory. 1941. 1st ed. New York: McGraw-Hill.
32. Stuchly, M. A., M. M. Brady, S. S. Stuchly and G.. Gajda. 1982. Equivalent circuit of an open-ended coaxial line in a lossy dielectric. IEEE Transactions on instrumentation and measurement, 31(2): 116-119.
33. Stuchly, M. A. and S. S. Stuchy, 1980. Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies-a review. IEEE Transactions on instrumentation and measurement 29: 176-183.
34. Tateya, A. and T. Takano. 1977. Effects of microwave radiation on two species of stored-product insects. Res. Bull. Pl. Prot. Japan 14: 52-59.
35. Tang, J., J. N. Ikediala, S Wang, J. D. Hansen, and R. P. Cavalieri. 2000. High-temperature-short time thermal quarantine methods. Postharvest Biology 21: 129-145.
36. UNEP. 1997. Ninth meeting of the parties to the Montreal protocol on substances that deplete the ozone layer. Montreal: UNEP OzL. Pro. 9/12. Available at: http://ozone.unep.org/Meeting_Documents/mop/09mop/MOP_9.shtml. Accessed 25 September 1997.
37. Vincent, C., B. Panneton, and F. Fleurat-Lessard. 2001. Physical control methods in plant protection. INRA ed., 74-82. Springer-Verlag: Heidelberg.
38. Wang, J. 2007. Study of electromagnetic field uniformity in radio frequency heating applicator. Department of Biological System Engineering. WA: Washington State University, Pullman.
39. Wang, S., J. N. Ikediala , J. Tang, J. D. Hansen, E. Mitcham, R. Mao, and B. Swanson. 2001. Radio frequency treatments to control codling moth in in-shell walnuts. Postharvest Biology and Technology 22:29-38.
40. Yokoyama, V. Y., G. T. Miller, and R. V. Dowell. 1991. Response of codling moth (Lepidoptera: Tortricidae) to high temperature, a potential quarantine treatment for exported commodities. Journal of Economic Entomology 84: 528-531.
41. Zhao, S., C. Qiu, S. Xiong, and Cheng, X. 2007. A thermal lethal model of rice weevils subjected to microwave irradiation. Journal of Stored Products Research 43: 430-434.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46921-
dc.description.abstract本研究應用一單模共振腔之微波介電加熱方式實行於稻米蟲害防制。米象 (Sitophilus oryzae) 對於稻穀侵蝕嚴重,除了造成質與量的降低外甚至影響到食品安全。由於米象與稻米介電性質的差異,在使用電磁波加熱上有選別性加熱的可能。為探討在高頻交變電場下米粒內部的加熱情況,研究使用有限元素分析軟體COMSOL Multiphysics 3.5a之耦合電磁模組與熱傳導模組進行暫態分析求解加熱過程的溫度變化,並在矩形波導管耦合圓柱單模共振腔的幾何結構中尋找合適的進料孔徑尺寸以達到較高加熱效率。模擬中分別探討米粒內不同位置的蟲卵,以及進料管內不同排列方向的米粒所造成的升溫差異。本研究提出之熱致死動力學模型顯示,米象成蟲在51℃僅需3到4秒即可達100 % 致死率。模擬微波加熱結果顯示5秒溫度可達60℃,而實際批次實驗量測加熱5秒所得平均溫度為56.8℃,與理論值接近。另外模擬中發現米粒朝垂直方向加熱與水平方向溫度分佈有顯著差異,前者加熱效率遠高於後者,因此若利用連續流動進料方式所產生的旋轉將有利於溫度均勻度的改進。本研究發展出介電加熱應用於稻米蟲害防治的方法,並以實驗與模擬數據提供將來商用設備設計的基礎。zh_TW
dc.description.abstractAn application of electromagnetic energy to rice disinfestation was implemented in this study by using a microwave single-mode cavity resonator. Rice weevil (Sitophilus oryzae), the target insect to be controlled, was suggested to show higher characteristic in dielectric loss factor so that differential heating was possible to be achieved in its host medium. To evaluate the intra-kernel temperature raise in the time-varying electric field, the 3D simulations of microwave model were constructed and computed by using commercial finite element method software COMSOL Multiphysics 3.5a with electromagnetic wave module and conduction heat transfer module to simulate the dielectric heating process. Using a single mode resonator to excite high electric field intensity in the center line of the resonator, high efficiency heating without attenuation is achievable. Results of the analysis showed that rice grain infested with a single weevil reached the literature lethal temperature of 60℃ for 5 seconds, having slight selective heating effect in the simulation models. While 56.8℃ was measured for the average experimental value during the same heating time, our thermal-mortality kinetics model found only 3 ~ 4 seconds at 51℃ was necessary for the adult rice weevil to reach 100 % mortality. Other results suggest that rice grain orientation parallel to the resonator axis has better heating efficiency than perpendicular condition; therefore, the heating uniformity might be improved by rotation under continuous feed-in situation. The finding from this study provides information in dielectric heating application to rice weevil control in rice which might help to deign a more energy-saving and time-saving electromagnetic energy treatment.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:43:21Z (GMT). No. of bitstreams: 1
ntu-99-R97631004-1.pdf: 2713307 bytes, checksum: 4cce2c00f88ba7c111e85f45f1857aa8 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
符號說明 x
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 2
第二章 文獻探討 3
2.1介電加熱原理 3
2.1.1 傳導與位移電流密度 3
2.1.2 介電質鬆弛損耗 4
2.1.3 功率消耗 5
2.2 射頻微波加熱比較 6
2.3 介電加熱的影響因素 8
2.3.1 電場強度分佈與介電性質 8
2.3.2 含水率、密度與介電性質 10
2.3.3 致死溫度 14
2.4 微波傳輸理論 16
2.4.1 矩形波導管 16
2.4.2 圓柱共振腔 18
2.5 介電係數量測 19
2.5.1 同軸探棒開路反射法 19
2.5.2 電容模型 (capacitance model) 20
2.6 米象培育與實驗前處理 22
第三章 研究方法 24
3.1 軟體模型建立 24
3.1.1 電磁模組設定 26
3.1.2 熱傳模組設定 27
3.1.3 模形幾何結構 28
3.2 實驗架構 29
3.2.1米象培育 30
3.2.2介電係數量測 31
3.2.3 微波加熱處理 34
第四章 結果與討論 37
4.1 軟體模擬結果 37
4.1.1 管徑比較 37
4.1.2 單粒米結構模型 42
4.2 介電係數量測結果 54
4.3微波加熱實驗結果 58
4.3.1 微波加熱升溫過程 58
4.3.2 米象成蟲加熱致死實驗 60
4.3.3 蟲卵處理結果 63
第五章 結論 65
參考文獻 66
dc.language.isozh-TW
dc.title單模共振腔介電加熱對米象防治之研究zh_TW
dc.titleSingle-Mode Cavity Resonator in Dielectric Heating for Rice Weevil (Sitophilus oryzae) Controlen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧福明,許如君
dc.subject.keyword微波加熱,米象,有限元素法,介電性質,zh_TW
dc.subject.keywordMicrowave heating,Sitophilus oryzae,FEM method,Dielectric property,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2010-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
2.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved