Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46900
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富(Ching-Fuh Lin)
dc.contributor.authorYu-Hong Linen
dc.contributor.author林宇宏zh_TW
dc.date.accessioned2021-06-15T05:42:59Z-
dc.date.available2013-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-20
dc.identifier.citation[1] http://blog.udn.com/roger222cn/1112232 山友與產業顧問部落格。
[2] Chen, H. Y. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photon. 3, 649-653 (2009).
[3] Web of Science,“ http: // isiknowledge. com
[4] 韓建中教授,材化特論:Organic Electronics,國立清華大學化學系
[5] K. Colladet, M. Nicolas, L. Goris, L. Lutsen, D. Vanderzande, “Low-band gap polymers for photovoltaic applications”, Thin Solid Films 451-452, P.P. 7-11, (2004).
[6] Kenji Okumoto, Kenjiro Wayaku, Tetsuya Noda, Hiroshi Kageyama, Yashuhiko Shirota, Amorphous molecular materials: charge transport in the glassy state of N/N’ –di(biphenylyl) –N,N’ –diphenyl-[1,1’ -biphenyl] -4,4’ -diamines, Synthetic Metals 111-112, 473-476 (2000).
[7] A. J. Breeze, A. Salomon , D.S. Ginley, and B. A. Gregga ,polymer-perylene diimide heterojunction solar cells, Appl. Phys. Lett. 81, 3085-3087 (2002).
[8] H. Neugebauer, C. Brabec, J.C. Hummelen, N.S. Sariciftci, “Stability and photo degradation mechanisms of conjugated polymer/fullerene plastic solar cells”, Solar Energy Materials & Solar Cells 61, 35-42(2000).
[9] C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48, 83(1986).
[10] P. Peumans, V. Bulovi, and S. R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diode, Appl. Phys. Lett. 79, 126(2001).
[11] Karg, W. Riess, V. Dyakonov, and M. Schwoerer, Electrical and optical characterization of poly(phentlene-vinylene) light emitting diode, Synth. Met. 54, 427(1993).
[12] G. Yu, J. Gao, J.Hummelen, F. Wudl, A. J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunction, Science 270, 1789(1995).
[13] K. Kim, J. Liu, M. A. G. Namboothiry, D. L. Carroll, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics”, Appl, Phys. Lett., 90, (2007)
[14] Shrotriya, V., Organic photovoltaics: Polymer power. Nature Photonics 3, 447-449 (2009).
[15] Thompson, B. C.; Fréchet, J. M. J., Organic photovoltaics - Polymer-fullerene composite solar cells. Angewandte Chemie-International Edition 47, 58-77 (2008).
[16] Krebs, F. C., Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials and Solar Cells 93, 394-412 (2009).
[17] N. Sekine et al. ZnO nano-ridge structure and its application in inverted polymer solar cell. Organic Electronics 10, 1473–1477 (2009).
[18] Bundgaard, E., Krebs, F. C. Low band gap polymers for organic photovoltaics. Solar Energy Material & Solar Cells 91, 954-985 (2007).
[19] 劉修宏,高效率高分子太陽能電池之研究,國立成功大學光電科學與工程研究所碩士論文 (2006).
[20] S. Shaheen, E., R. Radspinner, N. Peyghambarian, G. E. Jabbour, Appl. Phys. Lett. 79, 2996 (2001).
[21] J. Bharathan, Y. Yang, Appl. Phys. Lett. 72, 2660 (1988).
[22] C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. Janssen, N. S. Sariciftci, Synth. Met. 102, 861 (1999).
[23] B. Z. Hsieh, H. Y. Chuang, L. Chao, Y. J. Huang, P. H. Tseng, T. H. Hsieh, Y. K. Han, K. S. Ho, Degradation induced variation of LC transition of poly(n-undecyl isocyanate). Polym. Degrad. Stabil. 5, 983-989 (2007).
[24] C.S. Wu, Y.J. Huang, T.H. Hsieh, P.T. Huang, B.Z. Hsieh, Y.K. Han, K. S. Ho, 2008, Studies on the Conducting Nanocomposite prepared by in-situ Polymerization of aniline monomers in a Neat (aqueous) Synthetic Mica Clay. J. Polym. Sci. Polym. Chem. 46, 1800-1809 (2007).
[25] B. A. Gregg, J. Phys. Chem. B 107, 4688 (2003).
[26] J. J. Dittmer, E. A. Marseglia, and R. H. Friend, “Trapping in dye/ polymer blend photovoltaic Cells,” Adv. Mater. 12, 1270-1274 (2000).
[27] Jarzab, D. et al. Charge Transfer Dynamics in Polymer-Fullerene Blends for Efficient Solar Cells. J. Phys. Chem. B, 113, 16513–16517 (2009).
[28] 石政言,利用元件後段處理與主動層有機溶劑改善有機太陽能電池之短路電流密度,國立東華大學電機工程學系碩士論文 (2005)
[29] S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” MRS Bull. 30, 28-32 (2005).
[30] S. O. Kasap, Optoelectronics and Photonics Principles and Practices, Chapter6.
[31] S. O. Kasap, “Optoelectronics”, Prentice Hall, 1999.
[32] G.A. Chamberlain: Organic solar cells: A review. Solar Cells 8, 47 (1983).
[33] D. Wo¨hrle and D. Meissner: Organic solar cells. Adv. Mater. 3, 129 (1991).
[34] A. K. Ghosh and T.Fen, Merocyanine organic solar cells, J. Appl. Phys. 49, 5982-5989 (1978).
[35] D.L. Morel, A.K. Gosh, T. Feng, E.L. Stogryn, P.E. Purwin, R.F. Shaw, and C. Fishman, High-efficiency organic solar cells. Appl. Phys. Lett. 32, 495 (1978).
[36] C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48,
183-185 (1986).
[37] K. M. Coakley and M. D. McGehee, Conjugated polymer photovoltaic cells, Chem. Mater. 16, 4533-4542 (2004).
[38] 鄭弘彬, 有機無機混合太陽電池製程之研究, 國立清華大學電子工程研究
所碩士論文, 2006.
[39] J. Xue, S. Uchida, B. P. Rand, S. R. Forrest, Appl. Phys. Lett. 84, 3013 (2004).
[40] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron
transfer from a conducting polymer to buckminsterfullerene,” Science 258,
1474-1476 (1992).
[41] 黃則凱, 有機無機混掺薄膜太陽能電池之光電特性研究, 國立臺灣大學材
料科學與工程學研究所碩士論文, 2007.
[42] 蕭傑予,無機奈米線與有機材料混成太陽能電池之研究, 國立臺灣大學電機資訊學院光電工程學研究所碩士論文, 2008.
[43] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong , An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer, Appl. Phys. Lett. 93, 221107 (2008).
[44] Franz, P., Roman, S. R. & Niyazy, S. S. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13, 85-88 (2003).
[45] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang,
“High-efficiency solution processable polymer photovoltaic cells by
self-organization of polymer blends,” Nat. Mater. 4, 864-868 (2005).
[46] J. Huang, G. Li, and Y. Yang, “Influence of composition and heat-treatment on
the charge transport properties of poly (3-hexylthiophene) and [6,6]-phenyl
C61-butyric acid methyl ester blends,” Appl. Phys. Lett. 87, 112105 (2005).
[47] C. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci, “Organic Photovoltaics”, SPRINGER (2003).
[48] Chen, H. Y. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photon. 3, 649-653 (2009).
[49] http://spie.org/Images/Graphics/Newsroom/Imported/0756/0756_fig1.jpg
[50] W. Tang, D. C. Cameron, Thin Solid Films 238,83(1994).
[51] S. Muthukumar, C.R. Gorla, N.W. Emanetoglu, S. Liang, T. Lu, J. Cryst. Growth 225, 197(2001).
[52] H. S. Randhawa, M.D. Matthews, R.F. Bunshan, Thin Solid Films 83,267 (1981)
[53] W. Wenas, A. Yamada & K. Takahashi. Electrical and optical properties of boron-doped ZnO thin films for solar cells grown by metalorganic chemical vapor deposition. J. Appl. Phys. 70, pp. 7119(1991)
[54] H. Kim, J. S. Horwitz, S. B. Qadri & D. B. Chrisey. Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition. Thin Solid Films 420-421, pp.107-111(2002).
[55] P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes, Jr., “Transparent ZnO
[56] Lukas Schmidt-Mende, Judith L. MacMacnus-Driscoll, materialstoday 10, 40-48(2007).
[57] Yu-Yun Peng, Tsung-Eong Hsieh and Chia-Hung Hsu, Nanotechnology 17, 174-180 (2006).
[58] W. L. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology, Adv. Funct. Mater. 2005, 15, 1617
[59] Franz, P., Roman, S. R. & Niyazy, S. S. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13, 85-88 (2003).
[60] Ma, W., Yang, C., Gong, X., Lee, K. & Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617-1622 (2005).
[61] Moliton, A. & Nunzi, J. M. How to model the behaviour of organic photovoltaic cells. Polym. Int. 55, 583–600 (2006).
[62] Chen Tao, Shengping Ruan, Xindong Zhang, Guohua Xie, Liang Shen, Xiangzi Kong, Wei Dong, Caixia Liu, and Weiyou Chena, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer”, APPLIED PHYSICS LETTERS 93, 193307 (2008).
[63] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong , “An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer”, APPLIED PHYSICS LETTERS 93, 221107 (2008).
[64] Ana M. Peiro´, Punniamoorthy Ravirajan, Kuveshni Govender, David S. Boyle, Paul O’Brien, Donal D. C. Bradley, Jenny Nelson and James R. Durrant , ” Hybrid polymer/metal oxide solar cells based on ZnO columnar structures”, J. Mater. Chem. 16, 2088-2096(2006).
[65] Chen Tao, Shengping Ruan, Guohua Xie, Xiangzi Kong, Liang Shen, Fanxu Meng,Caixia Liu, Xindong Zhang, Wei Dong, and Weiyou Chen , “Role of tungsten oxide in inverted polymer solar cells”, APPLIED PHYSICS LETTERS 94, 043311 (2009).
[66] Irwin, M. D., Buchholz, D. B., Hains, A. W., Chang, R. P. H. & Marks, T. J. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cellsvol. Proc. Nat. Acad. Sci. U.S.A. 105, 2783-2787 (2008).
[67] N. Sekine et al. ZnO nano-ridge structure and its application in inverted polymer solar cell. Organic Electronics 10, 1473–1477 (2009).
[68] Li, G. et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater. 4, 864-868(2005).
[69] Takanezawa, K., Hirota, K., Wei, Q. S., Tajima, K. & Hashimoto, K. Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices. J. Phys. Chem. C 111, 7218-7223 (2007).
[70] Olson, D. C., Piris, J., Collins, R. T., Shaheen, S. E. & Ginley, D. S. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films 496, 26–29 (2006).
[71] Olson, D.C. et al. Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices. J. Phys. Chem. C 111, 16640–16645 (2007).
[72] Koster, L. J. A., Mihailetchi, V. D., Blom, P. W. M. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88, 093511 (2006).
[73] Jarzab, D. et al. Charge Transfer Dynamics in Polymer-Fullerene Blends for Efficient Solar Cells. J. Phys. Chem. B, 113, 16513–16517 (2009).
[74] Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. Appl. Phys. Lett. 78, 841–843 (2001).
[75] Kroeze, J. E.; Savenije, T. J.; Vermeulen, M. J. W.; Warman, J. M. J. Phys. Chem. B 107, 7696–7705 (2003).
[76] Bundgaard, E., Krebs, F. C. Low band gap polymers for organic photovoltaics. Solar Energy Material & Solar Cells 91, 954-985 (2007).
[77] Dhanabalan, A. et al. Adv. Funct. Mater. 11, 255 (2001).
[78] Koster, L. J. A., Mihailetchi, V. D., Blom, P. W. M. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88, 093511 (2006).
[79] Chen, H. Y. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photon. 3, 649-653 (2009).
[80] Tao, C. et al. Role of tungsten oxide in inverted polymer solar cells. Appl. Phys. Lett. 94, 043311 (2009).
[81] Huang, J. S. et al. Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods. Organic Electronics 10, 1060–1065 (2009).
[82] Olson, D. C., Piris, J., Collins, R. T., Shaheen, S. E. & Ginley, D. S. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films 496, 26–29 (2006).
[83] Olson, D.C. et al. Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices. J. Phys. Chem. C 111, 16640–16645 (2007).
[84] Jing-Shun Huang, Chen-Yu Chou, and Ching-Fuh Lin. Efficient and air-stable polymer photovoltaic devices with WO3-V2O5 mixed oxides as anodic modification. IEEE Electron Device Letter 31, 332-334 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46900-
dc.description.abstract有機太陽能電池具有質輕、可撓曲且在大面積下製作可以有較低的成本,近年來引起廣大的注意。在本論文中,我們使用PV2000做為倒置結構元件的主動層,比起P3HT/PCBM系統能提供較大的開路電壓。首先我們嘗試使用後退火處理來改善元件效率,藉由熱引發主動層型態的改善以及界面缺陷的修補,在這邊我們能發現後退火處理對於此元件的重要性。接著我們利用溶液製程的方式將金屬氧化物氧化鎳(稱作電子阻擋層/電洞傳輸層)旋轉塗佈在主動層上面,利用其較高的最低分子未佔據軌域,來阻擋電子直接傳輸到陽極與收集到此處的電洞進行復合,減少元件的漏電流產生增加元件的填充因子,進而提升反向結構元件之效率。當二氧化鈦奈米柱添加後,光吸收以及光電流的改善是顯而易見的,我們可以歸納出以下功能。第ㄧ,使主動層變厚從200nm提升至280nm,因此增加光吸收,使得光電流能有效提升。第二,其奈米結構型態能提供主動層與無機層間更大的接觸面積,能在有機層內幫助收集電子,並藉由高載子遷移率的無機通道傳送至ITO電極。第三,此二氧化鈦奈米柱可以降低激子復合的機率,幫助激子分離。因此元件效率能有效的被改善至5.61%。在論文的最後,我們將工研院研發的低能隙材料(ITRI P47:PC70BM)應用在我們倒置結構太陽能電池上,藉由調整主動層厚度改善光吸收之外,同時配合使用NiO層介於主動層以及銀電極之間做為電子阻擋層,阻擋電子傳送到電極銀處與電洞復合,有效抑制漏電流。zh_TW
dc.description.abstractOrganic photovoltaic devices are very attractive for their advantages of flexibility, light-weight, and large-area production at a dramatically low cost. In this study, the PV2000 material is used as a photoactive layer, which has a larger relative energy difference between the HOMO level of the electron-donating polymer and the LUMO level of the electron acceptor (energy difference ~1.7 eV) as compared to the standard P3HT:PCBM system, thereby leading to a larger VOC.
The better contact in the interface is achieved by the post-annealing process, which corrects the defects between electrode and polymer layer interface. Moreover, the thermally induced morphology modification, crystallization and improved interfacial transportation, thereby leading to better charge collection and reduced series resistance. These results show that the process of post-annealing is very important for our PV2000 inverted device.
We used solution process to replace deposition to spin NiO layer on active layer. NiO layer acts as an interfacial electron-blocking layer/hole-transporting layer (EBL/HTL). Utilizing its higher LUMO (lowest unoccupied molecular orbital) could block electron leakage to anode to recombine with hole. The leakage current is reduced to improve the power conversion efficiency of inverted structure devices.
When the TiO2 nanorods are introduced, an improvement of light harvest and photocurrent is achieved due to several factors. First, the photoactive layer is thickened and the light path is increased to have more light absorption. Second, the morphology is modified to provide the photoactive layer and inorganic layer a larger contact area for efficient charge collection. Third, the TiO2 nanorods enhance the photoluminescence quenching, indicating improved electron-hole dissociation. In this way, the high PCE of 5.61% from inverted PSCs is achieved.
In the second part of this work, our investigation apply the low band gap material (ITRI P47:PC70BM) as the photoactive layer. The light harvest is improved by adjusting the thickness of photoactive layer. In addition, we introduce the solution-process NiO layer between photoactive layer and silver as an electron blocking layer, therefore, the electron is forced to move toward the ITO electrodes, increasing the selectivity of the charge carriers and the shunt resistance of the photovoltaic cell.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:42:59Z (GMT). No. of bitstreams: 1
ntu-99-R97943081-1.pdf: 3010146 bytes, checksum: b4b7cb9a9b40b0f50907dd9bbde012e3 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄
口試審定書…………………………………………………………………....I
致謝…………………………………………………………………………....II
摘要…………………………………………………………………………...III
Abstract……………………………………………………………………….IV
目錄………………………………………………………………………V
圖目錄………………………………………………………………..VII
表目錄…………………………………………………………………IX
第一章 緒論………………………………………………………..1
1-1 簡介……………………………………………………...…...1
1-2 有機太陽能電池的發展……………………………………...…...4
1-3 研究動機…………………………………………...…...7
1-4 論文導覽…………………………………………...…...9
1-5 參考資料……………………………………………......10
第二章 有機太陽能電池的基本原理與結構探討……………………….12
2-1 概述………………………………………………………..12
2-2 有機太陽能電池之基本原理……………………..….....13
2-2-1 工作機制......................................................13
2-2-2 太陽光頻譜......................................................17
2-3 有機太陽能電池結構探討…………………………….…….19
2-3-1 單層結構…………………………………………....…...19
2-3-2 雙層異質接面結構……………………….……………..20
2-3-3 混成異質接面結構……………………………………..21
2-4 有機太陽能電池特性分析……………………………………….23
2-4-1 等效電路分析………………………………………......23
2-4-2 開路電壓分析…………………………………………...25
2-4-3 短路電流分析…………………………………………...27
2-4-4 填充因子分析…………………………………………...27
2-4-5 光電轉換效率分析……………………………………...28
2-5 參考資料…………………………………………………………..29
第三章 有機太陽能電池在倒置結構下的製備與研究............……….…32
3-1 傳統正向結構與倒置結構差異…………………………………..32
3-2 材料簡介..…..…..…..…..…..…..…..…..…..…..………….……...34
3-3 藉由退火處理改善元件效率……………………………………..35
3-3-1 元件結構及製備流程…………………………………...35
3-3-2 實驗結果與討論............………………………………...37
3-4 使用電子阻擋層改善元件效率…………………………………..41
3-4-1 元件結構及製備流程…………………………………...41
3-4-2 實驗結果與討論............………………………………...43
3-5 結論........………..…………………………………………………46
3-6 參考資料……..……………………………………………………47
第四章 添加無機二氧化鈦奈米柱混成有機太陽能電池……………….49
4-1 簡介………………………………………………………………..49
4-2 元件製備流程……………………………………………………..50
4-3 實驗結果與討論…………………………………………………..52
4-3-1 電壓電流特性曲線分析………………………………...52
4-3-2 吸收頻譜量測…………………………………………...56
4-3-3 二氧化鈦層之量測與分析……………………………...59
4-3-4 PL量測與分析...............…………………………...…...61
4-4 結論………………………………………………………………..63
4-5 參考資料…………………………………………………………..64
第五章 低能隙有機材料做為元件主動層之製備及研究................…….65
5-1 簡介............………………………………………………………..65
5-2 倒置型低能隙太陽能電池製備……………………………….….67
5-3 使用氧化鎳做為電子阻擋層改善元件效率.....................……….69
5-4 加入二氧化鈦奈米柱改善元件效率..............................................73
5-5 結論………………………………………………………………..76
5-6 參考資料………………………………………………………..…77
第六章 總結……………………………………………………………...78
6-1 論文回顧…………………………………………………………78
6-2 未來展望…………………………………………………………80
dc.language.isozh-TW
dc.subject二氧化鈦奈米柱zh_TW
dc.subject低能隙zh_TW
dc.subject有機共軛高分子太陽能電池zh_TW
dc.subject倒置結構zh_TW
dc.subject後退火處理zh_TW
dc.subject電子阻擋層zh_TW
dc.subjectlow band gapen
dc.subjectelectron blocking layeren
dc.subjectpost-annealingen
dc.subjectinverted structureen
dc.subjectorganic polymer solar cellen
dc.subjectTiO2 nanorodsen
dc.title有機高分子與無機混成太陽能電池在倒置結構下研究zh_TW
dc.titleStudy of Organic Polymer/Inorganic Semiconductor Hybrid Solar Cells in Inverted Structureen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林唯芳,吳志毅,何志浩
dc.subject.keyword有機共軛高分子太陽能電池,倒置結構,後退火處理,電子阻擋層,二氧化鈦奈米柱,低能隙,zh_TW
dc.subject.keywordorganic polymer solar cell,inverted structure,post-annealing,electron blocking layer,TiO2 nanorods,low band gap,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2010-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved