請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46863完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王傑智(Chieh-Chih Wang) | |
| dc.contributor.author | Chen-Han Hsiao | en |
| dc.contributor.author | 蕭辰翰 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:42:24Z | - |
| dc.date.available | 2011-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-20 | |
| dc.identifier.citation | Civera, J., Davison, A. J., & Montiel, J. M. M. (2008). Inverse depth parametrization
for monocular SLAM. IEEE Transactions on Robotics, 24(5), 932–945. Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). Monoslam: Real-time single camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1052–1067. Hartley, R. & Zisserman, A. (2004). Multiple View Geometry in Computer Vi- sion. Cambridge University Press. Lemaire, T., Berger, C., Jung, I.-K., & Lacroix, S. (2007). Vision-based slam: Stereo andmonocular approaches. International Journal of Computer Vision, 74(3), 343–364. Migliore, D., Rigamonti, R., Marzorati, D., Matteucci, M., & Sorrenti, D. G. (2009). Use a single camera for simultaneous localization and mapping with mobile object tracking in dynamic environments. In ICRA Work- shop on Safe navigation in open and dynamic environments: Application to au- tonomous vehicles. Montiel, J. M. M., Civera, J., & Davison, A. J. (2006). Unified inverse depth parametrization for monocular slam. In Robotics: Science and Systems, Philadelphia, USA. Parsley,M. P. & Julier, S. J. (2008). Avoiding negative depth in inverse depth bearing-only SLAM. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (pp. 2066–2071)., Nice, France. Sola, J. (2007). Towards Visual Localization, Mapping and Moving Objects Track- ing by a Mobile Robot: a Geometric and Probabilistic Approach. PhD thesis, Institut National Polytechnique de Toulouse. Vidal-Calleja, T., Bryson, M., Sukkarieh, S., Sanfeliu, A., & Andrade-Cetto, J. (2007). On the observability of bearing-only slam. In IEEE International Conference on Robotics and Automation (ICRA), (pp. 4114–4119)., Roma, Italy. Wangsiripitak, S. & Murray, D. W. (2009). Avoiding moving outliers in visual slam by tracking moving objects. In IEEE International Conference on Robotics and Automation (ICRA), (pp. 375–380)., Kobe, Japan. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46863 | - |
| dc.description.abstract | 已有不少基於卡爾曼濾波器的研究結果展示了使用單一相機來進行同步定位、建立地圖(SLAM)的可行性。然而,較少研究探討SLAM 在動態環境中的可行性。為了能在動態環境中同時建立靜態與動態地圖,我們提出一個基於卡爾曼濾波器的演算法架構及新的參數表示法來整合移動物體。藉由新的參數表示法,我們的演算法能同時估測環境中的靜態物體及動態物體,而達到廣泛物體的地圖建製(SLAM with generalized objects)。這樣的參數表示法繼承了倒數深度表示法(Inverse depth parametrization)的優點,像是較大範圍的距離估測、較佳的線性化參數表示。目前關於SLAM 在動態環境中的研究,皆需要數筆測量以確保物體的靜止性質,再延遲的進行物體初始化。而我們的參數表示法允許無延遲的物體初始化,使得我們的演算法能利用每一筆的測量而獲得更好的估測。同時,我們也提出了一個低運算量的動態、靜態物體分類演算法。模擬實驗顯示了我們演算法的準確性。而真實環境實驗也顯示了我們的演算法能在室內動態環境成功的進行廣泛物體的地圖建製(SLAM with generalized objects)。 | zh_TW |
| dc.description.abstract | RECENT works have shown the feasibility of the extended Kalman filtering(EKF) approach on simultaneous localization and mapping (SLAM) with a single camera. However, few approaches have addressed the solutions for the insufficient of SLAM to deal with dynamic environments. For accomplishing SLAM in dynamic environments, we proposed a unified framework based on a new parametrization for both static and non-static point features. By applying the new parametrization, the algorithmis able to integratemoving features and thus achieve monocular SLAM with generalized objects. The new parametrization inherits good properties of the inverse depth parametrization such as the ability to adopt large range of depths and better linearity. In addition, the new parametrization allows undelayed feature initialization. Contrary to the existing SLAM algorithms with delayed initialization approach which takes some measurements for the classification usage, our SLAM with generalized objects algorithmwith undelayed initialization would utilize each measurement on point features for filtering and has a better estimation of the environment. A low computational classification algorithmto distinguish static andmoving features is also presented. Simulations shows high accuracy of our classification algorithm and estimation about features. We also demonstrate the success of our algorithm with real image sequence captured from an indoor environment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:42:24Z (GMT). No. of bitstreams: 1 ntu-99-R97922120-1.pdf: 2801011 bytes, checksum: 85f0b58b81ca4a15b5bb80a521b210ea (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | ABSTRACT.................................ii
LIST OF FIGURES.............................iv LIST OF TABLES.............................. vi CHAPTER 1. INTRODUCTION.................... 1 1.1. INTRODUCTION.........................1 CHAPTER 2. STATE VECTOR DEFINITION IN SLAM WITH GENERALIZED OBJECT............4 2.1. STATE VECTORDEFINITIONINSLAMWITHGENERALIZED OBJECT.................................4 2.1.1. State Vector Definition.................... 4 2.1.2. Dynamic Inverse Depth Parametrization.......... 5 2.1.3. Undelayed Feature Initialization.............. 7 CHAPTER 3. STATIC AND MOVING OBJECT CLASSIFICATION.8 3.1. STATIC AND MOVING OBJECT CLASSIFICATION.....8 3.1.1. Velocity Convergency.................... 8 3.1.2. Define Score Function for Classification.......... 9 3.1.3. Classification State...................... 11 3.1.4. Issue on unobservable situations.............. 12 CHAPTER 4. EXPERIMENTAL RESULTS...............16 4.1. EXPERIMENTAL RESULTS...................16 4.1.1. Simulation...........................16 4.1.2. Real Experiments.......................22 CHAPTER 5. CONCLUSION AND FUTURE WORK.........30 5.1. CONCLUSION AND FUTURE WORK.............30 BIBLIOGRAPHY.............................. 32 | |
| dc.language.iso | en | |
| dc.subject | 卡爾曼濾波器 | zh_TW |
| dc.subject | 倒數深度表示法 | zh_TW |
| dc.subject | 物體追蹤 | zh_TW |
| dc.subject | 同步定位、地圖建置 | zh_TW |
| dc.subject | 單一攝影機 | zh_TW |
| dc.subject | 非延遲初始化 | zh_TW |
| dc.subject | Inverse depth parametrization | en |
| dc.subject | Kalman filter | en |
| dc.subject | Undelayed initialization | en |
| dc.subject | Object Tracking | en |
| dc.subject | SLAM | en |
| dc.subject | Monocular system | en |
| dc.title | 以單一攝影機完成同步定位、地圖建置與物體追蹤之非延遲初始化演算法 | zh_TW |
| dc.title | Monocular Simultaneous Localization and Generalized Object Mapping with Undelayed Initialization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 傅立成,莊永裕,黃漢邦,林達德 | |
| dc.subject.keyword | 單一攝影機,同步定位、地圖建置,物體追蹤,非延遲初始化,卡爾曼濾波器,倒數深度表示法, | zh_TW |
| dc.subject.keyword | Monocular system,SLAM,Object Tracking,Undelayed initialization,Kalman filter,Inverse depth parametrization, | en |
| dc.relation.page | 34 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
