Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46855Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 呂東武 | |
| dc.contributor.author | Ting-Yi Chen | en |
| dc.contributor.author | 陳廷伊 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:42:17Z | - |
| dc.date.available | 2020-12-31 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-20 | |
| dc.identifier.citation | 1. Yu, X.H. & Cheng, S.X. Training algorithms for backpropagation neural networks with optimal descent factor. Electronics Letters 26, 1698-1700 (1990).
2. Werbos, P.J. Generalization of backpropagation with application to a recurrent gas market model. Neural Networks 1, 339-356 (1988). 3. Wang, T.M., Chen, H.L. & Lu, T.W. Effects of obstacle height on the control of the body center of mass motion during obstructed gait. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an 30, 471-479 (2007). 4. Van Emmerik, R.E.A. & Wagenaar, R.C. Effects of walking velocity on relative phase dynamics in the trunk in human walking. Journal of Biomechanics 29, 1175-1184 (1996). 5. Stevens, J.A., Corso, P.S., Finkelstein, E.A. & Miller, T.R. The costs of fatal and non-fatal falls among older adults. Injury Prevention 12, 290-295 (2006). 6. Sterling, D.A., O'Connor, J.A. & Bonadies, J. Geriatric falls: Injury severity is high and disproportionate to mechanism. Journal of Trauma - Injury, Infection and Critical Care 50, 116-119 (2001). 7. Scott, J.C. Osteoporosis and hip fractures. Rheumatic Disease Clinics of North America 16, 717-740 (1990). 8. Riley, P.O., Paolini, G., Della Croce, U., Paylo, K.W. & Kerrigan, D.C. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait and Posture 26, 17-24 (2007). 9. Rabuffetti, M., Ferrarin, M. & Benvenuti, F. Spot check of the calibrated force platform location. Medical and Biological Engineering and Computing 39, 638-643 (2001). 10. Pai, Y.C. & Patton, J. Center of mass velocity-position predictions for balance control. Journal of Biomechanics 30, 347-354 (1997). 11. Li, L., Haddad, J.M. & Hamill, J. Stability and variability may respond differently to changes in walking speed. Human Movement Science 24, 257-267 (2005). 12. Kram, R., Griffin, T.M., Donelan, J.M. & Chang, Y.H. Force treadmill for measuring vertical and horizontal ground reaction forces. Journal of applied physiology 85, 764-769 (1998). 13. Hunt, K.J., Sbarbaro, D., Zbikowski, R. & Gawthrop, P.J. Neural networks for control systems - A survey. Automatica 28, 1083-1112 (1992). 14. Hornbrook, M.C., et al. Preventing falls among community-dwelling older persons: Results from a randomized trial. Gerontologist 34, 16-23 (1994). 15. Helbostad, J.L. & Moe-Nilssen, R. The effect of gait speed on lateral balance control during walking in healthy elderly. Gait and Posture 18, 27-36 (2003). 16. Hecht-Nielsen, R. Theory of the backpropagation neural network. 593-605 (1989). 17. Hausdorff, J.M., Rios, D.A. & Edelberg, H.K. Gait variability and fall risk in community-living older adults: A 1-year prospective study. Archives of Physical Medicine and Rehabilitation 82, 1050-1056 (2001). 18. Hahn, M.E., Farley, A.M., Lin, V. & Chou, L.S. Neural network estimation of balance control during locomotion. Journal of Biomechanics 38, 717-724 (2005). 19. Freeman, D.T. Computer recognition of brain stem auditory evoked potential wave V by a neural network. Proceedings / the . Annual Symposium on Computer Application [sic] in Medical Care. Symposium on Computer Applications in Medical Care, 305-309 (1991). 20. Fausett, L.V. & Elwasif, W. Predicting performance from test scores using backpropagation and counterpropagation. Vol. 5 3398-3402 (1994). 21. Draper, E.R.C. A treadmill-based system for measuring symmetry of gait. Medical Engineering and Physics 22, 215-222 (2000). 22. Dingwell, J.B., et al. Neuropathic gait shows only trends towards increased variability of sagittal plane kinematics during treadmill locomotion. Gait & posture 10, 21-29 (1999). 23. Dingwell, J.B., Kang, H.G. & Marin, L.C. The effects of sensory loss and walking speed on the orbital dynamic stability of human walking. J Biomech 40, 1723-1730 (2007). 24. Dingwell, J.B., Cusumano, J.P., Sternad, D. & Cavanagh, P.R. Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking. J Biomech 33, 1269-1277 (2000). 25. Dingwell, J.B. & Cavanagh, P.R. Increased variability of continuous overground walking in neuropathic patients is only indirectly related to sensory loss. Gait & posture 14, 1-10 (2001). 26. Dill, D.B. oxygen used in horizontal and grade walking and running on the treadmill. Journal of applied physiology 20, 19-22 (1965). 27. Collins, S.H., Adamczyk, P.G., Ferris, D.P. & Kuo, A.D. A simple method for calibrating force plates and force treadmills using an instrumented pole. Gait and Posture 29, 59-64 (2009). 28. Chou, L.S., Kaufman, K.R., Brey, R.H. & Draganich, L.F. Motion of the whole body's center of mass when stepping over obstacles of different heights. Gait and Posture 13, 17-26 (2001). 29. Chen, H.C., Ashton-Miller, J.A., Alexander, N.B. & Schultz, A.B. Stepping over obstacles: Gait patterns of healthy young and old adults. Journals of Gerontology 46(1991). 30. Alexander, B.H., Rivara, F.P. & Wolf, M.E. The cost and frequency of hospitalization for fall-related injuries in older adults. American Journal of Public Health 82, 1020-1023 (1992). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46855 | - |
| dc.description.abstract | 步行於移動平面而失去平衡是跌倒的主要原因之一,且極可能造成嚴重的後果。建立步行於不同速度之移動平面,下肢的完整下肢運動學與穩定度分析將有助於設計預測或預防跌倒之方法,因此本研究發展一可量測力量之跑步機,旨在藉此跑步機,建立年輕人步行於不同速度之移動平面時之下肢力動學資料進而用以評估其穩定性,以瞭解步行於不同速度之移動平面時之動作的穩定性及其調控機制。本研究利用一配有五台紅外線攝影機之動作分析系統量測十位健康年輕人步行於不同速度之移動平面時之全身運動學資料,並利用自行研發之測力跑步機量測其運動過程中之地面反作用力,接著以逆向動力學分析獲得終端點參數、骨盆、下肢關節角度、力矩、以及全身質量中心與足底壓力中心的運動,並以單因子變異數分析,比較步行於不同速度之移動平面的生物力學差異。本研究成功的運用校正後的測力跑步機完成一套人體動作分析研究,由比較過去文獻以及實驗的各項數據結果直接驗證測力跑步機已經可以正式的運用在未來任何的人體動作研究上。健康年輕人藉由改變下肢關節角度及角速度變化來因應移動平面速度的增加,並利用調節身體質量中心位置,速度,及加速度來維持平衡控制。當比較身體質量中心與足底壓力中心之間的夾角及角速度方面,不論是前後方向或者是左右方向,振幅皆大於行走至靜止平面之相對應瞬間的數值。顯示需要在速度增加時作必要的調節,尤其是在單腳支撐及雙腳支撐轉換時,其較小的向內身體質量中心及足底壓力中心之角度,提供神經肌肉骨骼系統較多的餘力來控制速度增加所造成的挑戰。關於動作執行之變異性來表示穩定度之研究,顯示隨著移動平面的速度增加,行走於移動平面之步態過程中,健康年輕人之動作不穩定性,主要發生在前後方向,且在行走於移動平面之步態過程中,健康年輕人作了一些下肢關節運動的改變,以至於關節間的協調也都有顯著的改變。使之能穩定地應付速度所造成的負荷,藉由關節間協調之型態及變異性,來控制動態平衡。 | zh_TW |
| dc.description.abstract | Instrumented treadmill allowing collecting ground reaction force during a large number of successive cycles make possible for the method to analyze motor control errors defined as movement variability. Since dynamic stability is closely related to variability, the observed variability during dynamic tasks can thus offers insight into neuromuscular control mechanisms. In the current study, an instrumented treadmill were developed providing vertical ground reaction force and centre of pressure (COP). Being synchronized together with a motion capture system, a complete kinematic and dynamic stability analysis were performed on 10 young subjects during treadmill walking to provide quantified biomechanical data of gait performance. Gait variables, joint angles as well as motion of the centere of mass (COM) and pelvis were calculated. The differences between eight speed conditions were analyzed using one-way ANOVA (12333 | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:42:17Z (GMT). No. of bitstreams: 1 ntu-99-R97548039-1.pdf: 1880254 bytes, checksum: 057a138782cf6cd5f606bf8e028996d6 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 目錄 v 表目錄 vii 圖目錄 ix 第壹章 緒論 1 第一節 研究背景 1 第二節 平衡控制與動作穩定 3 第三節 測力跑步機 5 1. 測力跑步機儀器的研發 5 2. 跑步機儀器的校正 6 3. OEMAL測力跑步機 8 4. 校正器 13 5. 靜動態校正實驗步驟 15 6. 訊號擷取及處理 16 7. 類神經網路校正方法 16 8. 校正驗證實驗 17 9. 校正結果靜態校正誤差(RMS) 18 第四節 研究目的 20 第貳章 研究方法 21 第一節 受試者資料 21 第二節 實驗儀器與設備 21 第三節 實驗步驟與流程 22 1. 系統校正 22 2. 實驗準備 22 3. 靜態校正 25 4. 跑步機實驗 25 第四節 人體下肢模型建立 26 第五節 分析方法 31 1. 質量中心 31 2. 質量中心與壓力中心之傾斜角 32 3. 關節間協調度 32 4. 統計分析 34 第參章 結果與討論 36 第一節 行走速度對於平衡控制的影響 36 第二節 行走速度對動作穩定性的影響 62 第肆章 結論 82 參考資料 83 | |
| dc.language.iso | zh-TW | |
| dc.subject | 人體動作分析、測力跑步機儀器 | zh_TW |
| dc.subject | 平衡控制 | zh_TW |
| dc.subject | 行走速度 | zh_TW |
| dc.subject | 動作穩定 | zh_TW |
| dc.subject | 步態 | zh_TW |
| dc.subject | movement stability | en |
| dc.subject | human motion analysis | en |
| dc.subject | instrumented treadmill | en |
| dc.subject | gait | en |
| dc.subject | walking speed | en |
| dc.subject | balance control | en |
| dc.title | 行走速度對於平衡控制與動作穩定性的影響 | zh_TW |
| dc.title | Effects of Walking Speed on the Balance Control and Movement Stability | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳文斌,周立善,楊世偉 | |
| dc.subject.keyword | 人體動作分析、測力跑步機儀器,步態,行走速度,平衡控制,動作穩定, | zh_TW |
| dc.subject.keyword | human motion analysis,instrumented treadmill,gait,walking speed,balance control,movement stability, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| Appears in Collections: | 醫學工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-99-1.pdf Restricted Access | 1.84 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
