請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46848完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
| dc.contributor.author | Yu-Sheng Chen | en |
| dc.contributor.author | 陳又生 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:42:11Z | - |
| dc.date.available | 2012-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-20 | |
| dc.identifier.citation | [1]. J. Orwell, P. Remagnino, G. Jones, “Multi-camera colour tracking,” in: Second IEEE Workshop on Visual Surveillance, 1999, pp. 14–21.
[2]. K. Nummiaro, E. Koller-Meier, T. Svoboda, D. Roth, L. Van Gool, “Color-based object tracking in multi-camera environments,” in: German Association for Pattern Recognition, 2003, pp. 591–599. [3]. M.H. Tan, S. Ranganath, “Multi-camera people tracking using bayesian networks,” in: Joint Conference of the Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia, vol. 3, 2003, pp. 1335 –1340. [4]. L. Jiang, C.S. Chua, Y.K. Ho, “Color based multiple people tracking,” in: Proceedings of IEEE Seventh International Conference on Control, Automation, Robotics and Vision, 2002, Vol. 1, 2–5 Dec 2002, pp. 309–314. [5]. S. Calderara, R. Vezzani, A. Prati, R. Cucchiara, “Entry edge of field of view for multi-camera tracking in distributed video surveillance,” in: Proceedings of IEEE International Conference on Advanced Video and Signal-Based Surveillance, 2005, pp. 93–98. [6]. W. Hu, M. Hu, X. Zhou, T. Tan, J. Lou and S. Maybank, “Principal axis-based correspondence between multiple cameras for people tracking,” in: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, 2006, pp. 663–671. [7]. S. Calderara, A. Prati, R. Vezzani, and R. Cucchiara. “Consistent labeling for multi-camera object tracking,” in: International Conference on Image Analysis and Processing, 2005. [8]. S.M. Khan, M. Shah, “A multiview approach to tracking people in crowded scenes using a planar homography constraint,” in: European Conference on Computer Vision, Graz, Austria, May 7–13, 2006. [9]. S. Calderara, R. Cucchiara, and A. Prati, “Bayesian-competitive consistent labeling for people surveillance,” in: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, 2008, pp. 354–360. [10]. T. Yang, S.Z. Li, Q. Pan, J. Li, “Real-time multiple objects tracking with occlusion handling in dynamic scenes,” in: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, June 20–25, 2005. [11]. C. Stauffer, W.E.L. Grimson, “Adaptive background mixture models for real-time tracking,” in: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, June 1998 [12]. D. Comaniciu, V. Ramesh and P. Meer, “Kernel-based object tracking,” in: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 5, 2003, pp. 564–575. [13]. S.M. Khan and M. Shah, “Tracking multiple occluding people by localizing on multiple scene planes,” in: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 3, 2009 , pp. 505–519. [14]. T. Zhao and R. Nevatia, “Tracking multiple humans in complex situations,” in: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 9, 2004, pp. 1208-1221. [15]. A. Senior, “Tracking people with probabilistic appearance models,” in: International Workshop on Performance Evaluation of Tracking and Surveillance (PETS) systems, 2002, pp. 48–55. [16]. C. Stauffer, W. Grimson, “Learning patterns of activity using real-time tracking,” in: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, 2000, pp. 747–757. [17]. V. Kettnaker, R. Zabih, “Bayesian multi-camera surveillance,” in: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, 1999, pp. 253–259 [18]. H. Pasula, S.J. Russell, M. Ostland, Y. Ritov, “Tracking many objects with many sensors,” in: International Joint Conferences on Artificial Intelligence, 1999, pp. 1160–1171. [19]. T. Huang, S.J. Russell, “Object identification in a bayesian context,” in: International Joint Conferences on Artificial Intelligence, 1997, pp. 1276–1283. [20]. Javed, Z. Rasheed, K. Shafique, M. Shah, “Tracking across multiple cameras with disjoint views,” in: Proceedings of IEEE International Conference on Computer Vision, vol. 2, 2003, pp. 952–957. [21]. C.-W. Lai, C.-M. Huang, “Multi-Target Tracking using Separated Importance Sampling Particle Filters with Joint Image Likelihood,” in: Proceedings of IEEE International Conference on System, Man, and Cybernetics, 2006 [22]. “Adaboost,” Wikipedia on line: http://en.wikipedia.org/wiki/AdaBoost [23]. C.-M. Huang, Y.-T. Lin, L.-C. Fu, “Effective Visual Surveillance with Cooperation of Multiple Active Cameras,” in: Proceedings of IEEE International Conference on System, Man, and Cybernetics, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46848 | - |
| dc.description.abstract | 近年來影像伺服於多相機系統的運用已隨著電腦運算的躍進而吸引大量研究者的目光。基於經濟層面考量,使用有限數量的相機來進行多人追蹤以及一致性標籤已逐漸成為一個重要的研究課題。於本論文中,我們提出了一個能穩健追蹤與即時辨認多人的影像伺服系統,該系統可以架設於一般的建築物結構中。相較於將所有即時影像集中到中央處理伺服器,本系統將追蹤以及影像分割等工作分散於每台獨立相機上面進行,僅將必要的資訊於必要的時刻送到中央處理伺服器進行相機目標物交互關係比對。本篇論文提出一套階層式交互比對多相機目標物的方法,並同時獲得目標物交互比對之信心指標。此信心指標將作為交互分析結果的正確率保證。在進行多相機目標物交互比對後可獲得環境中被追蹤者的人數以及每個人的外觀影像資訊,這些資訊將儲存於中央處理伺服器的目標物資料庫中,以便於判辨是否曾經有人重複出現。在不假設所有相機皆可觀察到共同地板平面的情況下,我們的階層式標籤系統仍可正確的進行目標物交互比對,並利用比對結果去驗證被追蹤者是否重複出現於監控環境中。被追蹤者的外觀資訊將被更新於資料庫中以及強化每台相機上獨立運行的追蹤系統。各相機的多目標物遮蔽處理能有效提升標籤系統的判斷精確度,減少因互相遮蔽所造成的外觀資訊擷取錯誤。經過實驗驗證,本系統即使在目標物互相重疊遮蔽的情況下仍可正確地進行一致性標籤的任務。於本論文最後,作者提出多份追蹤影片截圖並進行詳細的分析與討論。 | zh_TW |
| dc.description.abstract | Visual surveillance in multi-camera system has attracted more interest in recent years. Using limited number of cameras to simultaneously track and correctly label as many people as possible becomes an important topic of research, with low-cost consideration. In this thesis, we propose a surveillance system that can robustly track and identify multiple humans, for general building environments. Rather than gathering all information into a central server every frame, we track and segment each observation from local single camera, and only sending necessary information to the central server for correspondence processing at necessary time. Thus our framework can achieve observation correspondence between multi-cameras with confidence levels as correspondence quality indices. After correspondence process, the tracked object information is stored into the target databases for solving people re-entering problem. Without assuming common ground plane is observed by all cameras, our labeling process, which hierarchically associates objects after correspondence to target databases with matching confidence orders, still can construct relevant and accurate labeling assignment. The people information is then updated to improve target databases and local tracking performance. Occlusion handling for multi-object tracking can effectively enhance labeling accuracy and reduce the error of appearance information extraction due to object overlapping. The proposed labeling system yields robust performance even in most partial occlusion cases. Finally, we conclude with experimental results in several real video sequences and their detailed analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:42:11Z (GMT). No. of bitstreams: 1 ntu-99-R97921013-1.pdf: 5053483 bytes, checksum: 80ea7daafd1880b907e6f9f38b582fac (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 III ABSTRACT V CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 BRIEF LITERATURE REVIEW 2 1.3 CONTRIBUTION 4 1.4 THESIS ORGANIZATION 5 CHAPTER 2 PRELIMINARIES 6 2.1 PARTICLE FILTER 6 2.1.1 MONTE CARLO INTEGRATION 7 2.1.2 GENERIC STOCHASTIC FILTER FROM BAYESIAN PERSPECTIVE 8 2.1.3 SIS AND SIR PARTICLE FILTER 12 2.1.3.1 SIS PARTICLE FILTER 12 2.1.3.2 RESAMPLING 14 2.1.3.3 SIR PARTICLE FILTER 16 2.1.3.4 IMPOVERISHMENT PHENOMENON IN SIRPF 17 CHAPTER 3 OBSERVATION CORRESPONDENCE 19 3.1 OVERVIEW 19 3.1.1 TRACKING SYSTEM OVERVIEW 19 3.1.2 LABELING SYSTEM OVERVIEW 21 3.2 MULTI-OBSERVATION TRACKING SYSTEM 23 3.2.1 MULTI-FEATURE LIKELIHOOD EVALUATION 25 3.2.2 MULTI-OBSERVATION TRACKING WITH OCCLUSION HANDLING 29 3.3 OBSERVATION CORRESPONDENCE BETWEEN MULTI-CAMERA 33 3.3.1 MULTI-FEATURE OBSERVATION SIMILARITY 34 3.3.2 OBSERVATION CORRESPONDENCE WITH OBJECT CONFIDENCE LEVELS 41 CHAPTER 4 CONSISTENT LABELING PROCESSES 45 4.1 ASSOCIATION ALGORITHM 45 4.1.1 ASSOCIATION PROCESS USING TABLE REDUCTION 45 4.1.2 TARGET-OBJECT ASSOCIATION LIKELIHOOD 48 4.1.3 ASSOCIATION PROCESSES WITH MATCHING CONFIDENCE ORDERS 50 4.2 UPDATE MECHANISM OF TARGET DATABASE 54 4.2.1 TARGET CONFIDENCE UPDATE 54 4.2.2 TARGET APPEARANCE UPDATE BY GAUSSIAN MIXTURE MODEL 54 4.2.3 EFFICIENCY CONTRIBUTED BY UPDATE MECHANISM 59 CHAPTER 5 IMPLEMENTATION AND EXPERIMENTAL RESULTS 60 5.1 MULTI-OBSERVATION TRACKING SYSTEM WITH OCCLUSION HANDLING 60 5.1.1 MULTI-OBSERVATION TRACKING 61 5.1.2 OCCLUSION HANDLING OF MULTIPLE OBSERVATION TRACKING 61 5.1.2.1 MULTIPLE OBSERVATION TRACKING WITHOUT OCCLUSION HANDLING 62 5.1.2.2 OCCLUSION HANDLING OF TWO HEAD CONTOUR TRACKING 63 5.2 OBSERVATION CORRESPONDENCE 64 5.2.1 GEOMETRY CORRESPONDENCE 64 5.2.1.1 GEOMETRY CORRESPONDENCE ANALYSIS 65 5.2.1.2 GEOMETRY CORRESPONDENCE BASED ON CORRESPONDENCE HISTORY 67 5.2.2 APPEARANCE CORRESPONDENCE 69 5.2.2.1 IMPLEMENTATION OF BODY COLOR MODEL 69 5.2.2.2 BODY OCCLUSION MODEL 73 5.2.2.3 MULTI-CAMERA OBSERVATION CORRESPONDENCE 76 5.3 ASSOCIATION BETWEEN OBJECTS AFTER CORRESPONDENCE AND ONLINE TARGET DATABASES 78 5.3.1 IMPLEMENTATION OF TARGET DATABASE WITH GAUSSIAN MIXTURE MODEL 78 5.3.2 LABELING OF SINGLE PERSON RE-ENTERING 81 5.3.3 LABELING OF MULTI-PEOPLE RE-ENTERING 81 5.3.3.1 LABELING WITHOUT MATCHING CONFIDENCE ORDER 84 5.3.3.2 LABELING WITH MATCHING CONFIDENCE ORDER 86 CHAPTER 6 CONCLUSION AND FUTURE WORKS 91 6.1 CONCLUSION 91 6.2 FUTURE WORKS 92 | |
| dc.language.iso | en | |
| dc.subject | 多目標物追蹤之遮蔽處理 | zh_TW |
| dc.subject | 影像追蹤 | zh_TW |
| dc.subject | 一致性標籤 | zh_TW |
| dc.subject | 多目標物追蹤 | zh_TW |
| dc.subject | 多相機目標物交互比對分析 | zh_TW |
| dc.subject | multi-target tracking | en |
| dc.subject | correspondence between multiple cameras | en |
| dc.subject | consistent labeling | en |
| dc.subject | visual tracking | en |
| dc.subject | occlusion handling for multi-target tracking | en |
| dc.title | 多相機影像監控系統之高效率多目標物一致性標籤 | zh_TW |
| dc.title | Efficient Consistent Labeling in Visual Surveillance System with Multiple Cameras | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡竹生(Jwu-Sheng Hu),宋開泰(Kai-Tai Song),連豊力(Feng-Li Lian),范欽雄(Chin-Shyurng Fahn) | |
| dc.subject.keyword | 影像追蹤,一致性標籤,多目標物追蹤,多相機目標物交互比對分析,多目標物追蹤之遮蔽處理, | zh_TW |
| dc.subject.keyword | visual tracking,consistent labeling,multi-target tracking,correspondence between multiple cameras,occlusion handling for multi-target tracking, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
