請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46838完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇國棟(Guo-Dung Su) | |
| dc.contributor.author | Po-Yu Lin | en |
| dc.contributor.author | 林柏裕 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:42:03Z | - |
| dc.date.available | 2010-09-07 | |
| dc.date.copyright | 2010-09-07 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-20 | |
| dc.identifier.citation | 1.Noll, R. J. (1976). 'Zernike Polynomials and Atmospheric-Turbulence.' Journal of the Optical Society of America 66(3): 207-211.
2.http://scien.stanford.edu/class/psych221/projects/03/pmaeda/index.html, “Zernike Polynomials and Their Use in Describing the Wavefront Aberrations of the Human Eye” 3.Subaru Telescope, “Subaru Telescope Improves its Eyesight by a Factor of Ten”, Official Website of National Astronomical Observatory of Japan, November 20, 2006 Press Release (http://subarutelescope.org/Pressrelease/2006/11/20/index.html) 4.G. Vdovin, M. Loktev (2002). 'Deformable mirror with thermal actuators.' Optics Letters, v 27, n 9, p 677-679 5.Loktev, M. Y., V. N. Belopukhov, et al. (2000). 'Wave front control systems based on modal liquid crystal lenses.' Review of Scientific Instruments 71(9): 3290-3297 6.P. Tournois, Opt. Commun. 140, 245 (1997). 7.Verluise, F., V. Laude, et al. (2000). 'Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping.' Optics Letters 25(8): 575-577 8.C. Radzewicz, P. Wasylczyk, W. Wasilewski, and J. S. Krasiski (2004). 'Piezo-driven deformable mirror for femtosecond pulse shaping.' Optics Letters, Vol. 29, Issue 2, pp. 177-179 9.Paweł Wnuk, Czesław Radzewicz, Jerzy S. Krasi´nski (2005). 'Bimorph piezo deformable mirror for femtosecond pulse shaping.' Optics Express, Vol. 13, Issue 11, pp. 4154-4159 10.M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner (2003). 'Micromirror SLM for femtosecond pulse shaping in the ultraviolet.' Applied Physics B: Lasers and Optics, Volume 76, Number 6, pp. 711-714 11.T. Chen, C. Chiu, and G. J. Su,, 'A Large-Stroke MEMS Deformable Mirror Fabricated by Low-Stress Fluoropolymer Membrane,' IEEE Photonics Technology Letters, Vol. 20, No. 10, pp. 830-832, May 2008 12.Hamed Sadeghian, Ghader Rezazadeh, Ehsan Malekpour, Ayla Shafipour (2006). 'Pull-In Voltage of Fixed-Fixed End Type MEMS Switches with Variative Electrostatic Area.' Sensors & Transducers, Vol. 66, Issue 4, April 2006, pp. 526-533 13.V. Rochus, J.-C. Golinval, C. Louis, C. Mendez, I. Klapka (2007). 'Model of Electrostatic Actuated Deformable Mirror Using Strongly Coupled Electro-Mechanical Finite Element.' Dans Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS - DTIP 2006, Stresa, Lago Maggiore : Italie 14.D.K. Kim, W.D. Nix, R.P. Vinci, M.D. Deal, J.D. Plummer, J. Appl. Phys. 90 (2001) 781. 15.M.M. Nowell, D.P. Field, Mater. Res. Soc. Symp. Proc. 516 (1998) 115. 16.Soo-Jung Hwang,a Je-Hun Lee,b Chang-Oh Jeongb and Young-Chang Jooa (2007). 'Effect of film thickness and annealing temperature on hillock distributions in pure Al films.' Scripta Materialia, Volume 56, Issue 1, Pages 17-20 17.D.Maier-Schneider, J.Maibach, and E. Obermeier, “New analytical solution for the load–deflection of square membranes,” J. Microelectromech. Syst., vol. 4, no. 4, pp. 238–241, 1995. 18.Blevins, R. D. Formulas for Natural Frequency and Mode Shape; Krieger Publishing Company: Malabar, FL, 1979; pp 226, 240. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46838 | - |
| dc.description.abstract | 調適光學(AO)是藉由減少迅速改變的光學畸變,進而改進光學系統表現的技術。 現今,它在天文、雷射物理、非線性光學、醫學、視覺和國防工業扮演了更加重要的角色。 我們展示了波前主動式控制結合了波前感測器和靠靜電力驅動的MEMS 可形變鏡面是一可能解決方案。 鏡面以polyimide薄膜為主要結構。波前感測器偵測到影像後,並以Zernike多項式描述其像差,接著可形變鏡面便改正其畸變的波前。我們在這份論文裡製造出一個大尺寸的MEMS 可形變鏡面,它包含了直徑為 20 mm的圓形可形變區域和67個六角驅動電極。 除此之外,我們使用商業軟件, Ansys,模擬元件在不同電極施加時的形變行為;為了不同的應用需求,我們以模擬結果提出了一些製作參數上微調的建議。當我們施加195伏特在67個電極上時,我們量測到最大的形變位移是39 um。 由於我們所製造的可形變薄膜較大也較薄,它的共振頻率落在8 Hz附近。其外,我們也談論一些可能改進元件特性的方式,並且,從我們的實驗結果,我們認為可形變鏡面在波前主動式控制的領域裡有好的潛力。 | zh_TW |
| dc.description.abstract | Adaptive optics (AO) is a technology which improves the performance of optical systems by reducing the effects of rapidly changing optical distortion. Nowadays, it makes more important role in astronomy, laser physics, nonlinear optics, medicine, vision and defense industry. We demonstrate that wave front active control by combining wave front sensor and MEMS deformable mirrors which made of polyimide thin film actuated by electrostatic force is one possible solution. Wave front sensor detects the image and aberration could be described with Zernike polynomials, and the distorted wave-front may be corrected by deformable mirror. In this thesis, we fabricate a large-scale MEMS deformable mirror with a 20mm diameter circular opening and 67 hexagonal actuation electrodes. Moreover, we use commercial software, Ansys, to simulate the deformation behavior of the membrane with different electrodes applied and give some device parameter tuning for versatile application. The maximum stoke is 39um as 195 volts applied to 67 electrodes. Due to the large-scale of our thin membrane, resonant frequency is around 8 Hz. Besides, we also discuss some possible ways to improve device characteristics and we think deformable mirror has a good potential for wave front active control based on our experiment results. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:42:03Z (GMT). No. of bitstreams: 0 Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝……………………………..…………………………………………………...... Ⅰ
中文摘要……………………………………………………………………………… Ⅱ 英文摘要……………………...………¬……………………………………………… Ⅲ Contents……………………...……………..……………………………………........ ⅣList of Figures…………………………………..…………………………………….. Ⅴ List of Tables…………………………………...…………………………………….. Ⅵ Chaper1 Introduction………………………………….……………………………… 1 1-1 Adaptive Optics and Wave-front Correction……………………………….. 1 1-2 Other Technologies for Wave-front Control………………………………... 5 Chaper2 Mechanical Designs and Simulation………………………………….…… 12 2-1 Design Concept……………………………………………………………. 12 2-2 Simulation of Aberration Correction………………………………………. 18 Chaper3 Fabrication Process………………………………………………………... 24 3-1 Fabrication Process Flow………………………………………………….. 24 3-2 Membrane Quality Test.…………………………………………………… 29 Chaper4 Experiment Setup and Results…………………………………………….. 33 4-1 Mechanical Property Measurement………………………………………... 33 4-2 Actuation Range.…………………………………………………………... 37 4-3 Response time……………………………………………………………... 40 4-4 Wave front active control…………………………………………………..45 Chaper5 Conclusion………………………………………………………………… 47 5-1 Conclusion…………………………………………………………………. 47 5-2 Future Work……………………………………………………………….. 49 Appendix A ANSYS Simulation Macro File…………………………………………..51 Reference…………………………………………...………………………………..…57 | |
| dc.language.iso | en | |
| dc.subject | 微機電系統 | zh_TW |
| dc.subject | 可形變鏡面 | zh_TW |
| dc.subject | 光波前主動式控制 | zh_TW |
| dc.subject | MEMS | en |
| dc.subject | Wave Front Active Control | en |
| dc.subject | Deformable Mirror | en |
| dc.title | 用於光波前主動式控制之大尺寸可形變鏡面之製作與模擬 | zh_TW |
| dc.title | Fabrication and Simulation of Large-Scale MEMS Deformable Mirror for Wave Front Active Control | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡睿哲(Jui-che Tsai),李君浩(Jiun-Haw Lee) | |
| dc.subject.keyword | 微機電系統,可形變鏡面,光波前主動式控制, | zh_TW |
| dc.subject.keyword | MEMS,Deformable Mirror,Wave Front Active Control, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
