Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46832
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor賀培銘(Pei-Ming Ho)
dc.contributor.authorChien-Ho Chenen
dc.contributor.author陳建和zh_TW
dc.date.accessioned2021-06-15T05:41:58Z-
dc.date.available2010-08-24
dc.date.copyright2010-08-24
dc.date.issued2010
dc.date.submitted2010-08-21
dc.identifier.citation[1] M. Aganagic, J. Park, C. Popescu and J. H. Schwarz, “World-volume action of the M-theory …ve-brane,” Nucl. Phys. B 496, 191 (1997) [arXiv:hep-th/9701166].
[2] O. Aharony, O. Bergman, D. L. Ja¤eris and J. Maldacena, “N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,”JHEP 0810, 091 (2008) [arXiv:0806.1218 [hep-th]].
[3] I. Y. Arefeva, D. M. Belov, A. A. Giryavets, A. S. Koshelev and P. B. Medvedev, “Noncommutative …eld theories and (super)string …field theories,” [arXiv:hep-th/0111208].
[4] T. Asakawa and I. Kishimoto, “Comments on gauge equivalence in noncommutative geometry,”JHEP 9911, 024 (1999) [arXiv:hep-th/9909139].
[5] P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp and J. Wess, “A gravity theory on noncommutative spaces,” Class. Quant. Grav. 22, 3511 (2005) [arXiv:hep-th/0504183].
[6] P. Arvidsson, “Superconformal theories in six dimensions,” [arXiv:hep-th/0608014].
[7] J. Bagger and N. Lambert, “Modeling multiple M2’s,”Phys. Rev. D 75, 045020 (2007) [arXiv:hep-th/0611108].
[8] J. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry of Multiple M2-Branes,” Phys. Rev. D 77, 065008 (2008) [arXiv:0711.0955 [hep-th]].
[9] J. Bagger and N. Lambert, “Comments On Multiple M2-branes,”JHEP 0802, 105 (2008) [arXiv:0712.3738 [hep-th]].
[10] I. A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. P. Sorokin and M. Tonin, “Covariant action for the super fi…ve-brane of M-theory,”Phys. Rev. Lett. 78, 4332 (1997) [arXiv:hep-th/9701149].
[11] A. Basu and J. A. Harvey, “The M2-M5 brane system and a generalized Nahm’s equation,”Nucl. Phys. B 713, 136 (2005) [arXiv:hep-th/0412310].
[12] K. Becker, M. Becker and J. H. Schwarz, “String theory andM-theory: A modern introduction,”Cambridge, UK: Cambridge Univ. Pr. (2007) 739 p.
[13] X. Bekaert, M. Henneaux and A. Sevrin, “Chiral forms and their deformations,”Commun. Math. Phys. 224, 683 (2001) [arXiv:hep-th/0004049].
[14] E. Bergshoe¤, E. Sezgin and P. K. Townsend, “Supermembranes and eleven-dimensional supergravity,”Phys. Lett. B 189, 75 (1987).
[15] E. Bergshoe¤, 'The mathematical formulation of the M5-brane,' in Special Geometric Structures in String Theory, Bonn, 8th-11th Sept. 2001.
[16] D. S. Berman, “M-theory branes and their interactions,”Phys. Rept. 456, 89 (2008) [arXiv:0710.1707 [hep-th]].
[17] M. Born and L. Infeld, “Foundations Of The New Field Theory,” Proc. Roy. Soc. Lond. A 144, 425 (1934).
[18] C. G. . Callan, J. A. Harvey and A. Strominger, “World sheet approach to heterotic instantons and solitons,”Nucl. Phys. B 359, 611 (1991).
[19] C. G. . Callan, J. A. Harvey and A. Strominger, “Worldbrane actions for string solitons,”Nucl. Phys. B 367, 60 (1991).
[20] C. G. Callan and J. M. Maldacena, “Brane dynamics from the Born-Infeld action,”Nucl. Phys. B 513, 198 (1998) [arXiv:hep-th/9708147].
[21] A. Cannas da Silva, 'Lectures on symplectic geometry,' Lecture Notes in Mathematics, 1764. Springer-Verlag, Berlin, 2008 (corrected printing).
[22] S. Cecotti, M. C. N. Cheng, J. J. Heckman and C. Vafa, “Yukawa Couplings in F-theory and Non-Commutative Geometry,” [arXiv:0910.0477 [hep-th]].
[23] C. H. Chen, P. M. Ho and T. Takimi, “A No-Go Theorem for M5-brane Theory,”JHEP 1003, 104 (2010) [arXiv:1001.3244 [hep-th]].
[24] C. H. Chen, K. Furuuchi, P. M. Ho, T. Takimi, “More on the Nambu-Poisson M5-brane theory: Scaling limit, background independence and an all order solution to the Seiberg-Witten map,”[arXiv:1006.5291 [hep-th]].
[25] C. S. Chu and P. M. Ho, “Noncommutative open string and D-brane,” Nucl. Phys. B 550, 151 (1999) [arXiv:hep-th/9812219].
[26] C. S. Chu and P. M. Ho, “Constrained quantization of open string in background B …eld and noncommutative D-brane,” Nucl. Phys. B 568, 447 (2000) [arXiv:hep-th/9906192].
[27] K. Dasgupta and S. Mukhi, “Orbifolds of M-theory,”Nucl. Phys. B 465, 399 (1996) [arXiv:hep-th/9512196].
[28] J. A. de Azcarraga, J. P. Gauntlett, J. M. Izquierdo and P. K. Townsend, “Topological Extensions of the Supersymmetry Algebra for Extended Objects,”Phys. Rev. Lett. 63, 2443 (1989).
[29] J. A. de Azcarraga and J. M. Izquierdo, “n-ary algebras: a review with applications,” J. Phys. A 43, 293001 (2010) [arXiv:1005.1028 [math-ph]].
[30] B. de Wit, “Supergravity,” 2001 Les Houches Summer School “Unity of Fundamental Physics: Gravity, Gauge Theory and Strings,” [arXiv:hep-th/0212245].
[31] P. A. M. Dirac, “An Extensible model of the electron,” Proc. Roy. Soc. Lond. A 268 (1962) 57.
[32] J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, “M2-branes on M-folds,”JHEP 0805, 038 (2008) [arXiv:0804.1256 [hep-th]].
[33] M. R. Douglas, “Branes within branes,”[arXiv:hep-th/9512077].
[34] M. J. Du¤, P. S. Howe, T. Inami and K. S. Stelle, “Superstrings in D = 10 from supermembranes in D = 11,”Phys. Lett. B 191, 70 (1987).
[35] M. J. Du¤ and K. S. Stelle, “Multi-membrane solutions of D = 11 supergravity,”Phys. Lett. B 253, 113 (1991).
[36] J. P. Dufour, and N. T. Zung, “Poisson Structures and their normal forms,”Birkhäuser, 2005.
[37] S. Fidanza, “Towards an explicit expression of the Seiberg-Witten map at all orders,”JHEP 0206, 016 (2002) [arXiv:hep-th/0112027].
[38] J. M. Figueroa-O’Farrill, “Three lectures on 3-algebras,”[arXiv:0812.2865 [hep-th]].
[39] V. T. Filippov, 'n-Lie algebras,' Sib. Mat. Zh.,26, (1985) 126-140 .
[40] E. S. Fradkin and A. A. Tseytlin, “Nonlinear Electrodynamics From Quantized Strings,”Phys. Lett. B 163, 123 (1985).
[41] J. P. Gauntlett, J. Gomis and P. K. Townsend, “BPS bounds for world-volume branes,”JHEP 9801, 003 (1998) [arXiv:hep-th/9711205].
[42] G. W. Gibbons, “Born-Infeld particles and Dirichlet p-branes,” Nucl. Phys. B 514, 603 (1998) [arXiv:hep-th/9709027].
[43] D. J. Gross and F. Wilczek, “Ultraviolet Behavior of Non-Abelian Gauge Theories,”Phys. Rev. Lett. 30, 1343 (1973).
[44] R. Gueven, “Black p-brane solutions of D = 11 supergravity theory,”Phys. Lett. B 276 (1992) 49.
[45] A. Gustavsson, “Algebraic structures on parallel M2-branes,”Nucl. Phys. B 811, 66 (2009) [arXiv:0709.1260 [hep-th]].
[46] A. Gustavsson, “M5 brane from mass deformed BLG theory,”JHEP 0911, 071 (2009) [arXiv:0909.2518 [hep-th]].
[47] A. Gustavsson, “An associative star-three-product and applications to M two/M …five-brane theory,”[arXiv:1008.0902 [hep-th]].
[48] P. M. Ho and Y. Matsuo, “M5 from M2,” JHEP 0806, 105 (2008) [arXiv:0804.3629 [hep-th]].
[49] P. M. Ho, “A Concise Review on M5-brane in Large C-Field Background,” [arXiv:0912.0445 [hep-th]].
[50] P. M. Ho, Y. Imamura and Y. Matsuo, “M2 to D2 revisited,”JHEP 0807, 003 (2008) [arXiv:0805.1202 [hep-th]].
[51] P. M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, “M5-brane in three-form flux and multiple M2-branes,” JHEP 0808 (2008) 014 [arXiv:0805.2898 [hep-th]].
[52] G. T. Horowitz and A. Strominger, “Black strings and P-branes,” Nucl. Phys. B 360, 197 (1991).
[53] P. S. Howe, N. D. Lambert and P. C. West, “The self-dual string soliton,” Nucl. Phys. B 515, 203 (1998) [arXiv:hep-th/9709014].
[54] P. S. Howe and R. W. Tucker, “A Locally Supersymmetric And Reparametrization Invariant Action For A Spinning Membrane,”J. Phys. A 10, L155 (1977).
[55] C. M. Hull and P. K. Townsend, “Unity of superstring dualities,” Nucl. Phys. B 438, 109 (1995) [arXiv:hep-th/9410167].
[56] B. Jurco and P. Schupp, “Noncommutative Yang-Mills from equivalence of star products,”Eur. Phys. J. C 14, 367 (2000) [arXiv:hep-th/0001032].
[57] B. Jurco, P. Schupp and J.Wess, “Noncommutative gauge theory for Poisson manifolds ,”Nucl. Phys. B 584, 784 (2000) [arXiv:hep-th/0005005].
[58] B. Jurco, P. Schupp and J. Wess, “Nonabelian noncommutative gauge theory via noncommutative extra dimensions,” Nucl. Phys. B 604, 148 (2001) [arXiv:hep-th/0102129].
[59] B. Jurco, P. Schupp and J. Wess, “Noncommutative line bundle and Morita equivalence,” Lett. Math. Phys. 61, 171 (2002) [arXiv:hep-th/0106110].
[60] D. M. Kaplan and J. Michelson, “Zero Modes for the D=11 Membrane and Five-Brane,”Phys. Rev. D 53, 3474 (1996) [arXiv:hep-th/9510053].
[61] A. Kapustin, “Topological strings on noncommutative manifolds,”Int. J. Geom. Meth. Mod. Phys. 1, 49 (2004) [arXiv:hep-th/0310057].
[62] P. Koerber, “Abelian and non-Abelian D-brane e¤ective actions,”Fortsch. Phys. 52, 871 (2004) [arXiv:hep-th/0405227].
[63] E. Kiritsis, “String theory in a nutshell,”Princeton, USA: Univ. Pr. (2007) 588 p.
[64] I. R. Klebanov and G. Torri, “M2-branes and AdS/CFT,” Int. J. Mod. Phys. A 25, 332 (2010) [arXiv:0909.1580 [hep-th]].
[65] N. Lambert and C. Papageorgakis, “Nonabelian (2,0) Tensor Multiplets and 3-algebras,”[arXiv:1007.2982 [hep-th]].
[66] N. Lambert and D. Tong, “Membranes on an Orbifold,”Phys. Rev. Lett.
101, 041602 (2008) [arXiv:0804.1114 [hep-th]].
[67] R. G. Leigh, “Dirac-Born-Infeld Action from Dirichlet Sigma Model,” Mod. Phys. Lett. A 4, 2767 (1989).
[68] C. H. Liu and S. T. Yau, “D-branes and Azumaya noncommutative geometry: From Polchinski to Grothendieck,”[arXiv:1003.1178 [math.SG]].
[69] F. Lizzi, R. J. Szabo and A. Zampini, “Geometry of the gauge algebra in noncommutative Yang-Mills theory,”JHEP 0108, 032 (2001) [arXiv:hep-th/0107115].
[70] J. Madore, S. Schraml, P. Schupp and J. Wess, “Gauge theory on noncommutative spaces,”Eur. Phys. J. C 16, 161 (2000) [arXiv:hep-th/0001203].
[71] J. M. Maldacena, “The large N limit of superconformal …eld theories and supergravity,”Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200].
[72] A. Miemiec and I. Schnakenburg, “Basics of M-theory,” Fortsch. Phys.54, 5 (2006) [arXiv:hep-th/0509137].
[73] J. Moser,“ On the Volume Elements on a Manifold,”Transactions of the American Mathematical Society, 120(1965)286-294
[74] R. C. Myers, “Dielectric-branes,” JHEP 9912, 022 (1999) [arXiv:hep-th/9910053].
[75] K. Nagao, 'Non-commutative Donaldson-Thomas theory and vertex operators,' [arXiv:0910.5477 [math.AG]].
[76] W. Nahm, “A Simple Formalism For The Bps Monopole,”Phys. Lett. B 90, 413 (1980).
[77] Y. Nambu, “Generalized Hamiltonian dynamics,” Phys. Rev. D 7, 2405 (1973).
[78] T. Ortin, “Gravity And Strings,” Cambridge Unversity, Cambridge University Press, 2004.
[79] P. Pasti, D. P. Sorokin and M. Tonin, “On Lorentz invariant actions for chiral p-forms,”Phys. Rev. D 55, 6292 (1997) [arXiv:hep-th/9611100].
[80] P. Pasti, D. P. Sorokin and M. Tonin, “Covariant action for a D = 11 five-brane with the chiral …eld,”Phys. Lett. B 398, 41 (1997) [arXiv:hep-th/9701037].
[81] P. Pasti, I. Samsonov, D. Sorokin and M. Tonin, “BLG-motivated Lagrangian formulation for the chiral two-form gauge …eld in D=6 and M5-branes,”Phys. Rev. D 80, 086008 (2009) [arXiv:0907.4596 [hep-th]].
[82] N. G. Pletnev, “Filippov-Nambu n-algebra relevant to physics,” Siberian Electronic Mathematical Reports 6(2009)272-311.
[83] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75, 4724 (1995) [arXiv:hep-th/9510017].
[84] J. Polchinski, “String theory. Vol. 1: An introduction to the bosonic string, Vol. 2: Superstring theory and beyond. ” 1998,Cambridge, UK: Univ. Pr.
[85] H. D. Politzer, “Reliable Perturbative Results for Strong Interactions?” Phys. Rev. Lett. 30, 1346 (1973).
[86] A. M. Polyakov, “Quantum geometry of fermionic strings,”Phys. Lett. B103, 211 (1981).
[87] J. Scherk and J. H. Schwarz, “Dual Models For Nonhadrons,”Nucl. Phys.B 81, 118 (1974).
[88] J. H. Schwarz, “The M theory …five-brane,”arXiv:hep-th/9706197.
[89] J. H. Schwarz, “Superconformal Chern-Simons theories,”JHEP 0411, 078
(2004) [arXiv:hep-th/0411077].
[90] N. Seiberg and E.Witten, “String theory and noncommutative geometry,”
JHEP 9909 (1999) 032 [arXiv:hep-th/9908142].
[91] D. P. Sorokin and P. K. Townsend, “M-theory superalgebra from the M5-brane,”Phys. Lett. B 412, 265 (1997) [arXiv:hep-th/9708003].
[92] A. Strominger and C. Vafa, “Microscopic Origin of the Bekenstein-Hawking Entropy,”Phys. Lett. B 379, 99 (1996) [arXiv:hep-th/9601029].
[93] R. J. Szabo, “Quantum Field Theory on Noncommutative Spaces,”Phys. Rept. 378, 207 (2003) [arXiv:hep-th/0109162].
[94] B. Szendroi,'Non-commutative Donaldson-Thomas theory and the conifold,' Geom. Topol. 12 (2008) 1171-1202, [arXiv:0705.3419 [math.AG]].
[95] L. Takhtajan, “On Foundation Of The Generalized Nambu Mechanics (Second Version),” Commun. Math. Phys. 160, 295 (1994) [arXiv:hep-th/9301111].
[96] P. K. Townsend, “The eleven-dimensional supermembrane revisited,”
Phys. Lett. B 350, 184 (1995) [arXiv:hep-th/9501068].
[97] P. K. Townsend, “D-branes from M-branes,”Phys. Lett. B 373, 68 (1996)
[arXiv:hep-th/9512062].
[98] A. A. Tseytlin, “Born-Infeld action, supersymmetry and string theory,”
[arXiv:hep-th/9908105].
[99] I. Vaisman, “Lectures on the Geometry of Poisson Manifolds,”
Birkhäuser, 1994.
[100] I. Vaisman, 'A survey on Nambu-Poisson brackets,' Acta Math. Univ.
Comenian. 68 (1999) 213–241.
[101] G. Veneziano, “Construction of a crossing-symmetric, Regge behaved
amplitude for linearly rising trajectories,”Nuovo Cim. A 57, 190 (1968).
[102] E. Witten, “Noncommutative Geometry And String Field Theory,”Nucl.
Phys. B 268, 253 (1986).
[103] E. Witten, “String theory dynamics in various dimensions,”Nucl. Phys.
B 443, 85 (1995) [arXiv:hep-th/9503124].
[104] E. Witten, “Bound states of strings and p-branes,” Nucl. Phys. B 460,
335 (1996) [arXiv:hep-th/9510135].
[105] E. Witten, “Five-branes and M-theory on an orbifold,”Nucl. Phys. B 463,383 (1996) [arXiv:hep-th/9512219].
[106] E. Witten and D. I. Olive, “Supersymmetry Algebras That Include Topological Charges,”Phys. Lett. B 78, 97 (1978).
[107] T. Yoneya, “Connection of Dual Models to Electrodynamics and Gravidynamics,”Prog. Theor. Phys. 51 (1974) 1907.
[108] B. Zwiebach, “A …first course in string theory,”second edition, Cambridge, UK: Univ. Pr. (2009) 673 p.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46832-
dc.description.abstractM-theory is hoped to unify five superstring theories. In M-theory, there exists two fundamental extensive objects, M2- and M5-branes. They can relate to fundamental strings and D-branes by compactifying some directions of M-branes on a nontrivial submanifold. Recently, BLG model is proposed by manipulating Lie 3-algebra to construct multiple coincident M2-branes theory, which is a superconformal non-abelian gauge theory. Furthermore, manipulating a specific kind of Lie 3-algebra 'Nambu-Poisson bracket,' a single M5-brane theory is realized from the BLG M2-branes theory. Using double dimensional reduction, this theory can be reduced to the first order in coupling constant g of the noncommutative U(1) gauge theory on a D4-brane world-volume. But the Nambu-Poisson M5-brane theory cannot be deformed such that it reduces to the higher order terms of the Moyal bracket of the D4-brane theory. Therefore, we provide a no-go theorem describing that it is impossible to construct the higher order terms to match these two theories, at least perturbatively and in large C field background. A second order solution of Seiberg-Witten map of the theory is given, there appears an ambiguity for gauge transformation. An exact solution is also given without any free parameter.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:41:58Z (GMT). No. of bitstreams: 1
ntu-99-D93222002-1.pdf: 510966 bytes, checksum: 6a5be6e33e27bb06c157be356e227464 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents1 Introduction 3
1.1 Background and motivation . . . . . . . . . . . . . . 3
1.2 Recent developments . . . . . . . . . . . . . . . . . 4
2 String worldsheet and p-branes worldvolume theories and NCG 6
2.1 Polyakov world-sheet action of string . . . . . . . . 6
2.2 Nambu-Goto action of p-branes . . . . . . . . . . . . 8
2.3 Dirac-Born-Infeld and Wess-Zumino actions . . . . . . 9
2.4 D-brane and noncommutative geometry . . . . . . . . .12
3 BLG M2-brane worldvolume theory and Lie-3 algebra 16
3.1 A single M2-brane theory . . . . . . . . . . . . . . 16
3.2 Metric Lie 3-algebra . . . . . . . . . . . . . . . . 18
3.3 BLG multiple M2-branes theory . . . . . . . . . . . .19
4 M5-brane worldvolume theory 21
4.1 Pasti-Sorokin-Tonin M5-brane theory . . . . . . . . .22
4.2 Nambu-Poisson M5-brane theory . . . . . . . . . . . .23
4.2.1 Nambu-Poisson manifold . . . . . . . . . . . . . . 23
4.2.2 Nambu-Poisson 3-algebra . . . . . . . . . . . . . .24
4.2.3 M5 from M2 . . . . . . . . . . . . . . . . . . . . 24
4.2.4 Volume preserving diffeomorphism (VPD) . . . . . . 29
4.2.5 M5 to D4 . . . . . . . . . . . . . . . . . . . . . 30
4.3 No-go theorem . . . . . . . . . . . . . . . . . . . .34
4.4 Dimension analysis of Nambu-Poisson M5-brane theory 37
5 Seiberg-Witten map in the Nambu-Poisson M5-brane theory 39
5.1 The second order of the Seiberg-Witten map of b and κ41
5.2 The second order term of the Seiberg-Witten map B . .42
5.3 The origin of the e2 deformation: VPD . . . . . . . 44
5.4 An exact special solution of the Seiberg-Witten map 44
6 Conclusion 46
A Symplectic structure 48
B Poisson geometry 50
C Schouten-Nijenhuis bracket of multi-vector fields 51
Bibliography 53
dc.language.isoen
dc.title南部-泊松M5膜世界體理論及賽伯格威騰映射zh_TW
dc.titleNambu-Poisson M5-brane world-volume theory and Seiberg-Witten mapen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee高涌泉,陳俊瑋,詹傳宗,高賢忠
dc.subject.keywordM理論,超弦,膜動力學,賽伯格-威騰映射,非交換幾何,zh_TW
dc.subject.keywordM-theory,superstring,brane dynamics,Seiberg-Witten map,noncommutative geometry,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2010-08-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
Appears in Collections:物理學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
498.99 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved