請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46786完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊裕澤 | |
| dc.contributor.author | Ting-Ying Huang | en |
| dc.contributor.author | 黃婷穎 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:41:29Z | - |
| dc.date.available | 2013-08-18 | |
| dc.date.copyright | 2011-08-18 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-04 | |
| dc.identifier.citation | [1] Zhou, G., H. Joshi, and C. Bayrak. Topic categorization for relevancy and opinion detection. in Proceedings of the 16th Text REtrieval Conference (TREC). 2007.
[2] Gruen, T.W., T. Osmonbekov, and A.J. Czaplewski, eWOM: The impact of customer-to-customer online know-how exchange on customer value and loyalty. Journal of Business Research, 2006. 59(4): p. 449-456. [3] Melnik, M.I. and J. Alm, Does a seller!|s ecommerce reputation matter? evidence from ebay auctions. The journal of industrial economics, 2002. 50(3): p.337-349. [4] Draper, G. and R. Riesenfeld, Who votes for what? a visual query language for opinion data. | IEEE Transactions on Visualization and Computer Graphics, 2008: p. 1197-1204. [5] Wanner, F., et al., Visual sentiment analysis of rss news feeds featuring the us presidential election in 2008. 2009: Citeseer. [6] Ferris, G. R., F. R. Blass, et al. (2003). 'Personal reputation in organizations.' Organizational behavior: The state of the science 2: 211-246. [7] Zacharia, G., A. Moukas, et al. (1999). Collaborative reputation mechanisms in electronic marketplaces, IEEE. [8] Nielsen, J. (1999). 'User interface directions for the Web.' Communications of the ACM 42(1): 65-72. [9] Kalepu, S., S. Krishnaswamy, et al. (2004). 'Reputation= f (user ranking, compliance, verity).' [10] Weng, Y., C. Hu, et al. 'BREM: A Distributed Blogger Reputation Evaluation Model Based on Opinion Analysis.' [11] Bharadwaj, K. K. and M. Y. H. Al-Shamri (2009). 'Fuzzy computational models for trust and reputation systems.' Electronic Commerce Research and Applications 8(1): 37-47. [12] Huynh, T. D., N. R. Jennings, et al. (2006). 'An integrated trust and reputation model for open multi-agent systems.' Autonomous Agents and Multi-Agent Systems 13(2): 119-154. [13] Card, S.K., J.D. Mackinlay, and B. Shneiderman, Readings in information visualization: using vision to think. 1999: Morgan Kaufmann. [14] Ware, C., Information visualization: perception for design. 2004: Morgan Kaufmann. [15] Keim, D.A., Information visualization and visual data mining. IEEE transactions [16] Wang Baldonado, M.Q., A. Woodruff, and A. Kuchinsky. Guidelines for using multiple views in information visualization. 2000: ACM. [17] Fekete, J.D. and C. Plaisant, Interactive information visualization of a million items. 2002. [18] Carlis, J.V. and J.A. Konstan. Interactive visualization of serial periodic data. 1998: ACM. [19] Johnson, B. and B. Shneiderman. Tree-maps: A space-filling approach to the visualization of hierarchical information structures. 1991: IEEE Computer Society Press. [20] Kapler, T. and W. Wright, Geotime information visualization. Information Visualization, 2005. 4(2): p. 136. [21] Carles Sierra; John Debenham, Information-Based Reputation, First International Conference on Reputation: Theory and Technology, Gargonza, Italy, p.5-19 (2009) [22] Chen, Y. and J. Xie (2008). 'Online consumer review: Word-of-mouth as a new element of marketing communication mix.' Management Science 54(3): 477-491. [23] Liu, L., M. Munro, et al. (2010). 'Evaluation of collecting reviews in centralized online reputation systems.' [24] Wang, Y. and K. J. Lin (2008). 'Reputation-oriented trustworthy computing in e-commerce environments.' IEEE Internet Computing: 55-59. [25] Wu, F., H. H. Li, et al. (2010). 'Reputation evaluation for choosing a trustworthy counterparty in C2C e-commerce.' Electronic Commerce Research and Applications. [26] Gutowska, A. and K. Buckley (2008). Computing reputation metric in multi-agent e-commerce reputation system, IEEE. [27] Fujimura, K., T. Inoue, et al. (2005). The eigenrumor algorithm for ranking blogs, Citeseer. [28] Weng, Y. and L. Zhao (2010). A Blogger Reputation Evaluation Model Based on Opinion Analysis, IEEE. [29] Han, Y. S., L. Kim, et al. (2009). 'Evaluation of user reputation on YouTube.' Online Communities and Social Computing: 346-353. [30] Brammer, S. J. and S. Pavelin (2006). 'Corporate reputation and social performance: The importance of fit.' Journal of Management Studies 43(3): 435-455. [31] Walsh, G., V. W. Mitchell, et al. (2009). 'Examining the antecedents and consequences of corporate reputation: A customer perspective.' British Journal of Management 20(2): 187-203. [32] Hansen, H., B. M. Samuelsen, et al. (2008). 'Customer perceived value in BtB service relationships: Investigating the importance of corporate reputation.' Industrial Marketing Management 37(2): 206-217. [33] Keh, H. T. and Y. Xie (2009). 'Corporate reputation and customer behavioral intentions: The roles of trust, identification and commitment.' Industrial Marketing Management 38(7): 732-742. [34] Zinko, R., G. R. Ferris, et al. (2010). 'Personal reputation in organizations: Two study constructive replication and extension of antecedents and consequences.' Journal of Occupational and Organizational Psychology. [35] Hu, M., and Liu, B. Mining and summarizing customer reviews. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2004) (2004), pp. 168–177. [36] Kim, S.-M., and Hovy, E. Determining the sentiment of opinions. In Proceedings of the 20th International Conference on Computational Linguistics (COLING 2004) (2004), pp. 1367–1373. [37] Lee,T.Y., and Bradlow, E. T. Automatic construction of conjoint attributes and levels from online customer reviews. University of Pennsylvania, The Wharton School Working Paper OPIM WP 06-08-01, 2006. [38] Liu, B., Hu, M., and Cheng, J. Opinion observer: Analyzing and comparing opinions on the Web. In Proceedings of the 14th International World Wide Web Conference (WWW 2005) (2005), pp. 342–351. [39] Dellarocas, C. (2005). 'Reputation mechanisms.' Handbook on Economics and Information Systems. [40] Zhou, R. and K. Hwang (2007). 'Powertrust: A robust and scalable reputation system for trusted peer-to-peer computing.' IEEE Transactions on Parallel and Distributed Systems: 460-473. [41] Gershon, N., S. G. Eick, et al. (1998). 'Information visualization.' interactions 5(2): 9-15. [42] Chittaro, L. (2001). 'Information visualization and its application to medicine.' Artificial Intelligence in Medicine 22(2): 81-88. [43] Keim, D. A. (2002). 'Information visualization and visual data mining.' IEEE transactions on Visualization and Computer Graphics: 1-8. [44] Shneiderman, B. (1996). 'The eyes have it: A task by data type taxonomy for information visualizations.' vl: 336. [45] Kaser, O. and D. Lemire (2007). 'Tag-cloud drawing: Algorithms for cloud visualization.' Arxiv preprint cs/0703109. [46] Liu, S., M. X. Zhou, et al. (2009). Interactive, topic-based visual text summarization and analysis, ACM. [47] Tian, Y., R. A. Hankins, et al. (2008). Efficient aggregation for graph summarization, ACM. [48] McGuffin, M. J. and J. M. Robert (2009). 'Quantifying the space-efficiency of 2D graphical representations of trees.' Information Visualization 9(2): 115-140. [49] Ku, L. W., T. H. Huang, et al. (2009). Using morphological and syntactic structures for Chinese opinion analysis, Association for Computational Linguistics. [50] Schulz, H. J., S. Hadlak, et al. (2010). 'The design space of implicit hierarchy visualization: A survey.' IEEE transactions on Visualization and Computer Graphics. [51] Baron, M. E. (1969). 'A note on the historical development of logic diagrams: Leibniz, Euler and Venn.' The Mathematical Gazette 53(384): 113-125. [52] Kamal .. Bharadwaj, Mohammad a. h. y. a. Al-Shamri, Fuzzy computational models for trust and reputation systems, Electronic Commerce Research and Applications, Vol. 8, No. 1. (January 2009), pp. 37-47. [53] R.R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Transactions on Systems, Man and Cybernetics 18 (1) (1988) 183–190. [54] Robert T. Clemen, Comment on Cooke's classical method, Reliability Engineering & System Safety Volume 93, Issue 5, May 2008, Pages 760-765. [55] Kamal K. Bharadwaja, and Mohammad Yahya H. Al-Shamri, Fuzzy computational models for trust and reputation systems, Electronic Commerce Research and Applications Volume 8, Issue 1, January-February 2009, Pages 37-47. [56] Michal Majdan, Wlodzimierz Ogryczak. Multicriteria Subjective Reputation Management Model. In Proceedings of RSCTC'2010. pp.678~687. [57] Garcin, Florent ; Faltings, Boi ; Jurca, Radu, Aggregating Reputation Feedback, Proceedings of the First International Conference on Reputation: Theory and Technology, vol. 1, num. 1, 2009, p. 62-74 [58] W. Teacy, Jigar Patel, Nicholas Jennings, Michael Luck TRAVOS: Trust and Reputation in the Context of Inaccurate Information Sources. Autonomous Agents and Multi-Agent Systems, Vol. 12, No. 2. (March 2006), pp. 183-198. [59] Bibb Latane, The psychology of social impact, American Psychologist, Vol. 36, No. 4. (April 1981), pp. 343-356. [60] Michael D. Miller, and C. Cryss Brunner, Social impact in technologically-mediated communication: An examination of online influence, Computers in Human Behavior Volume 24, Issue 6, 17 September 2008, Pages 2972-2991 [61] Harton, H. C. and M. Bullock (2007). 'Dynamic social impact: A theory of the origins and evolution of culture.' Social and Personality Psychology Compass 1(1): 521-540. [62] Holtz, S. (2002). Public relations on the net, Amacom. [63] Nowell, L. T. (1997). Graphical encoding for information visualization: using icon color, shape, and size to convey nominal and quantitative data, Citeseer. [64] Kaya, N. and H. H. Epps (2004). 'Relationship between color and emotion: a study of college students.' College student journal 38: 396-405. [65] Binkley, D. and M. Harman (2004). 'Analysis and visualization of predicate dependence on formal parameters and global variables.' Software Engineering, IEEE Transactions on 30(11): 715-735. [66] Kim, K., T. Kulkarni, et al. (2009). Interaction workspaces: Identity tracking for multi-user collaboration on camera-based multi-touch tabletops. [67] Nagy, P. G., M. J. Warnock, et al. (2009). 'Informatics in Radiology: Automated Web-based Graphical Dashboard for Radiology Operational Business Intelligence1.' Radiographics 29(7): 1897. [68] Collins, C. R. and K. Stephenson (2003). 'A circle packing algorithm.' Computational Geometry 25(3): 233-256. [69] Plaisant, C. (2004). The challenge of information visualization evaluation, ACM. [70] Information Visualization Evaluation – wikiviz http://www.wikiviz.org/wiki/Information_Visualization_Evaluation | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46786 | - |
| dc.description.abstract | 隨著網際網路的發達,愈來愈多人會在網路上發表自己的看法與評論。這些意見代表著被評論的對象在網路上的民意反應,了解這些民意可以讓被評論的對象更瞭解自身的優缺點並加以改進,不論是企業或是知名人物對於這些網路民意的瞭解程度將會是提升自身競爭力的一個關鍵因素。
然而,這些網路意見所反應出來的民意並沒有一個可以具體說明程度的指標,若要一筆一筆瞭解這些網路意見的內容會是一件困難且耗時的任務。在我們的研究中,提出一個反應網路民意的指標:”名聲 (Reputation)”。我們利用自動化意見分析的方法判斷出網路評論內容的正負傾向與意見強度,我們稱之為”情緒分數 (Sentiment score)”。除此之外,我們還提出了一個”認同度 (Support)”的概念,來衡量每筆評論被認同的程度。綜合這兩個數值來衡量一筆意見,再透過加權平均的方法整合這些意見計算一個對象的”名聲”來代表網路上大家對它的看法。接著,我們衡量某個對象的整體網路民意對於他人的影響力。這個影響力的量化是要讓企業或是知名人物對於自身的名聲給予網路上瀏覽者的影響力有一個具體的概念。 為了能讓這些指標更容易被理解,我們提出了資訊視覺化的方法來呈現這些指標。我們利用”泡泡圖 (bubble chart)”可以呈現多維度資訊的特性來呈現這些指標在不同對象之間的差異,並且搭配階層的概念來呈現這些指標在不同階層中的變化。 | zh_TW |
| dc.description.abstract | With the development of Internet, more and more people are sharing their ideas and views via the World Wide Web. These opinions represent the reaction from the public discussions toward the target; the targets can realize their strengths and improve weaknesses through the public opinion. In any circumstances, figuring out the public’s opinions is a key factor to enhancing competitiveness for both corporate groups and celebrities.
However, there are no quantified indexes to interpret the opinions, and it is also a complex task to analyze them. Therefore, we proposed an index, called “Reputation” to represent the overall public opinions. The index is an aggregation of the whole public opinion. It consists of two dimensions: “Sentiment score” and “Support”. We used a weighted average method to aggregate opinions, which formed the final reputation of an entity. This entity is the attitudes from the public. In addition, we further measured the impact of the opinions to other people. The goal of quantifying the impact value is to let corporate groups and celebrities realize their own reputation as well as the impact of public opinions. In order to clearly understand this, we proposed a visualization system to display these indexes. We will use the characteristic of Bubble Chart which can simultaneously display multiple dimensions to differentiate multiple targets’ indexes. Moreover, we also apply circle packing display to visualize hierarchy distribution within each entity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:41:29Z (GMT). No. of bitstreams: 1 ntu-100-R98725046-1.pdf: 2783540 bytes, checksum: 20692e174b5220500df48dfe9f0954f8 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Background and Motivation 1 1.2 Existing works 2 1.3 Our contribution 3 Chapter 2 Related Works 4 2.1 Definition of Reputation and Introduction 4 2.2 Reputation Mechanisms 5 2.3 Information Visualization 10 2.4 Summary 18 Chapter3 Method 19 3.1 Method Overview 19 3.2 Data Preprocessing 20 3.3 Reputation Calculation 21 3.4 Impact of Opinions 29 3.5 Visual Analytics 32 3.6 Summary 37 Chapter 4 Result and Discussion 38 4.1 Experiment Data 38 4.2 Case 1: Corporates 39 4.3 Case 2: Politicians 45 4.4 Evaluation 50 4.5 Summary 53 Chapter 5 Conclusion and future work 56 | |
| dc.language.iso | en | |
| dc.subject | 意見 | zh_TW |
| dc.subject | 泡泡圖 | zh_TW |
| dc.subject | 名聲 | zh_TW |
| dc.subject | 認同度 | zh_TW |
| dc.subject | 情緒分數 | zh_TW |
| dc.subject | Support | en |
| dc.subject | Bubble chart | en |
| dc.subject | Reputation | en |
| dc.subject | Opinions | en |
| dc.subject | Sentiment score | en |
| dc.title | 網路評價視覺化 | zh_TW |
| dc.title | On the Visualization of Online Reputation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊傳凱,楊立偉,盧信銘 | |
| dc.subject.keyword | 意見,名聲,情緒分數,認同度,泡泡圖, | zh_TW |
| dc.subject.keyword | Opinions,Reputation,Sentiment score,Support,Bubble chart, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-04 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
