請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46783完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃鼎偉(Ding-Wei Huang) | |
| dc.contributor.author | Yao-Feng Ma | en |
| dc.contributor.author | 馬躍峰 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:41:28Z | - |
| dc.date.available | 2011-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-20 | |
| dc.identifier.citation | References
[1] T. Tsuchizawa, et al., 'Microphotonics devices based on silicon microfabrication technology,' Selected Topics in Quantum Electronics, IEEE Journal of, vol. 11, pp. 232-240, 2005. [2] D. R. L. Kevin K. Lee, Hsin-Chiao Luan, Anuradha Agarwal, James Foresi, and Lionel C. Kimerling, 'Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,' Applied Physics Letters, vol. 77, p. 1617, 2000. [3] T. T. K. Yamada, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, H. Morita, 'Microphotonics Devices Based on Silicon Wire Waveguiding System,' IEICE TRANSACTIONS on Electronics vol. E87-C, pp. 351-358, 2004. [4] K. Yamada, et al., 'Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,' Opt. Lett., vol. 28, pp. 1663-1664, 2003. [5] H. Fukuda, et al., 'Four-wave mixing in silicon wire waveguides,' Opt. Express, vol. 13, pp. 4629-4637, 2005. [6] K. Yamada, et al., 'All-optical efficient wavelength conversion using silicon photonic wire waveguide,' Photonics Technology Letters, IEEE, vol. 18, pp. 1046-1048, 2006. [7] D. Taillaert, et al., 'A compact two-dimensional grating coupler used as a polarization splitter,' Photonics Technology Letters, IEEE, vol. 15, pp. 1249-1251, 2003. [8] R. W. Michael, et al., 'Towards Integrated Polarization Diversity: Design, Fabrication and Characterization of Integrated Polarization Splitters and Rotators,' 2005, p. PDP11. [9] M. R. Watts, et al., 'Integrated mode-evolution-based polarization splitter,' Opt. Lett., vol. 30, pp. 967-969, 2005. [10] J. J. G. M. V. d. Tol, et al., 'A short polarization splitter without metal overlays on InGaAsP-InP,' Photonics Technology Letters, IEEE, vol. 9, pp. 209-211, 1997. [11] I. Kiyat, et al., 'A compact silicon-on-insulator polarization splitter,' Photonics Technology Letters, IEEE, vol. 17, pp. 100-102, 2005. [12] K. K. Lee, et al., 'Effect of size and roughness on light transmission in a Si/SiO[sub 2] waveguide: Experiments and model,' Applied Physics Letters, vol. 77, pp. 1617-1619, 2000. [13] P. Dumon, et al., 'Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,' Photonics Technology Letters, IEEE, vol. 16, pp. 1328-1330, 2004. [14] H. Yamada, et al., 'Si Photonic Wire Waveguide Devices,' Selected Topics in Quantum Electronics, IEEE Journal of, vol. 12, pp. 1371-1379, 2006. [15] W. Bogaerts, et al., 'Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,' Lightwave Technology, Journal of, vol. 23, pp. 401-412, 2005. [16] M. C. T. Bahaa E. A. Saleh, Fundamentals of Photonics: John Wiley & Sons, Inc., 1991. [17] R. Ramaswami and K. N. Sivarajan, Optical Networks. London: Academic Press, 2002. [18] I. P. K. a. T. L. Koch, Optical Fiber Telecommunications IIIA. San Diego, CA: Academic Press, 1997. [19] J. H. Winters and S. Kasturia, 'Adaptive nonlinear cancellation for high-speed fiber-optic systems,' Lightwave Technology, Journal of, vol. 10, pp. 971-977, 1992. [20] A. N. Miliou, et al., 'A 1.3 mm directional coupler polarization splitter by ion exchange,' Lightwave Technology, Journal of, vol. 11, pp. 220-225, 1993. [21] S.-H. Hsu, 'Optical waveguide tap with low polarization dependence and flattened wavelength using a Mach?Zehnder directional coupler,' Appl. Opt., vol. 49, pp. 2434-2440, 2010. [22] A. Rostami and G. Rostami, 'All-Optical Implementation of Tunable Low-Pass, High-Pass, and Bandpass Optical Filters Using Ring Resonators,' J. Lightwave Technol., vol. 23, p. 446, 2005. [23] S.-Y. Cho and R. Soref, 'Interferometric microring-resonant 2 x 2 optical switches,' Opt. Express, vol. 16, pp. 13304-13314, 2008. [24] Y. Li, et al., 'Coupled-ring-resonator-based silicon modulator for enhanced performance,' Opt. Express, vol. 16, pp. 13342-13348, 2008. [25] D. X. Xu, et al., 'Folded cavity SOI microring sensors for highsensitivity and real time measurement ofbiomolecular binding,' Opt. Express, vol. 16, pp. 15137-15148, 2008. [26] W. Bogaerts, et al., 'A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,' Opt. Express, vol. 15, pp. 1567-1578, 2007. [27] H. Fukuda, et al., 'Silicon photonic circuit with polarization diversity,' Opt. Express, vol. 16, pp. 4872-4880, 2008. [28] P. Dumon, et al., in Lasers and Electro-Optics Society Annual Meeting, 2003. [29] K. Wada, in Photonics West, San Jose, CA, 2004. [30] M. K. Chin, et al., 'GaAs microcavity channel-dropping filter based on a race-track resonator,' Photonics Technology Letters, IEEE, vol. 11, pp. 1620-1622, 1999. [31] M. Chin, 'Polarization dependence in waveguide-coupled micro-resonators,' Opt. Express, vol. 11, pp. 1724-1730, 2003. [32] M.-k. Chin, et al., 'Theoretical approach to a polarization-insensitive single-mode microring resonator,' Opt. Express, vol. 12, pp. 3245-3250, 2004. [33] K. Okamoto, Fundamentals of Optical Waveguides: Academic Press. [34] Q. L. L. Yin, and G. P. Agrawal, 'Dispersion tailoring and soliton propagation in silicon waveguides,' Opt. Lett., vol. 31, pp. 1295–1297, 2006 2006. [35] F. N. X. E. Dulkeith, L. Schares, W. M. J. Green, and Y. A. Vlasov, 'Group index and group velocity dispersion in silicon-on-insulator photonic wires,' Opt. Express, vol. 14, pp. 3853–3863, 2006 2006. [36] C. M. A. C. Turner, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, 'Tailored anomalous group-velocity dispersion in silicon channel waveguides,' Opt. Express, vol. 14, pp. 4357–4362, 2006 2006. [37] W. M. J. G. X. Liu, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood, Jr., 'Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,' Opt. Lett., vol. 33, pp. 2889–2891, 2008 2008. [38] C. M. d. S. M. R. Lamont, and B. J. Eggleton, 'Dispersion engineering of highly nonlinear As(2)S(3) waveguides for parametric gain and wavelength conversion,' Opt. Express, vol. 15, pp. 9458–9463, 2007 2007. [39] C. A. Barrios, et al., 'Slot-waveguide biochemical sensor,' Opt. Lett., vol. 32, pp. 3080-3082, 2007. [40] T. Fujisawa and M. Koshiba, 'Polarization-independent optical directional coupler based on slot waveguides,' Opt. Lett., vol. 31, pp. 56-58, 2006. [41] A. Khanna, et al., 'Polarization properties of two-dimensional slot waveguides,' Appl. Opt., vol. 49, pp. 5321-5332, 2010. [42] A. Khanna, et al., 'Control of optical mode properties in cross-slot waveguides,' Appl. Opt., vol. 48, pp. 6547-6552, 2009. [43] N.-N. Feng, et al., 'Lossless strip-to-slot waveguide transformer,' Opt. Lett., vol. 32, pp. 1250-1252, 2007. [44] J. V. Galan, et al., 'Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,' Appl. Opt., vol. 48, pp. 2693-2696, 2009. [45] N. L. T. J. Jagerska, R. Houdre, J. Bolten, C. Moormann, T. Wahlbrink, J. Ctyroky, M. Waldow, and M. and Forst, 'Dispersion properties of silicon nanophotonic waveguides investigated with Fourier optics,' Opt. Lett., vol. 32, pp. 2723–2725, 2007 2007. [46] L. O. F. A. Di Falco, and T. F. Krauss, 'Dispersion control and slow light in slotted photonic crystal waveguide,' Appl. Phys. Lett., vol. 92, p. 083501, 2008 2008. [47] J. V. G. R. Spano, P. Sanchis, A. Martinez, J. Marti, and L. Pavesi, 'Group velocity dispersion in horizontal slot waveguides filled by Si nanocrystals,' presented at the International Conf. on Group IV Photonics, 2008. [48] M. I. Z. Zheng, and J. Liu, 'Dispersion characteristics of SOI-based slot optical waveguides,' Opt. Commun., vol. 281, pp. 5151–5155, 2008 2008. [49] Y. Y. L. Zhang, Y. Xiao-Li, R. G. Beausoleil, and A. E. Willner, 'Highly dispersive slot waveguides,' Opt. Express, vol. 17, pp. 7095–7101, 2009 2009. [50] V. R. Almeida, et al., 'Guiding and confining light in void nanostructure,' Opt. Lett., vol. 29, pp. 1209-1211, 2004. [51] C. L. Xu, et al., 'Full-vectorial mode calculations by finite difference method,' Optoelectronics, IEE Proceedings -, vol. 141, pp. 281-286, 1994. [52] H. A. Haus and W. Huang, 'Coupled-mode theory,' Proceedings of the IEEE, vol. 79, pp. 1505-1518, 1991. [53] H. A. Haus, 'Electron beam waves in microwave tubes ' Proc. of Symposium on Electronics, pp. 8-10, Apr. 1958 1958. [54] H. A. Haus, 'Power-flow relations in lossless nonlinear media,' Trans. IRE, pp. 317-324, July 1958 1958. [55] P. A. Sturrock, 'Kinematics of growing waves,' Phys. Rev., vol. 112, pp. 1488-1503, Dec. 1958 1958. [56] E. A. J. Marcatili, 'Dielectric rectangular waveguide and directional coupler for integrated optics,' Bell Syst. Tech. J., vol. 48, pp. 2071-2102, Sept.1969 1969. [57] H. F. Taylor, 'Optical switching and modulation in parallel dielectric waveguides,' J. Appl. Phys., vol. 44, pp. 3257-3262, July 1973 1973. [58] H. K. a. R. V. Schmidt, 'Switched directional couplers with alternating Db,' IEEE J. Quantum electron, vol. QE-12, pp. 396-401, July 1976 1976. [59] M. F. J. Noda, and O. Mihami, 'Design calculations for directional couplers abricated by Ti-diffused LiNbO3 waveguides,' Appl. Opt., vol. 20, pp. 2284-2298, July 1981 1981. [60] R. C. A. a. P. S. Cross, 'Filter characteristics of codirectionally coupled waveguide with weighted coupling ' IEEE J. Quantum electron, vol. QE-14, pp. 843-847, Nov. 1978 1978. [61] R. C. A. a. R. V. Schmidt, 'Tunable optical waveguide directional coupler filter,' Appl. Phys. Lett., vol. 33, pp. 161-163, July 1978 1978. [62] M. Polyanskiy. (2008-2011). Refractive Index Database Available: http://refractiveindex.info [63] P. D. Trinh, et al., 'Integrated optical directional couplers in silicon-on-insulator,' Electronics Letters, vol. 31, pp. 2097-2098, 1995. [64] T. K. L. a. H. K. Tsang, 'Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,' IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 17, pp. 393-395, Feb. 2005 2005. [65] G. F. Qian Wang, and Yuliya Semenova, 'Design of Integrated Polarization Beam Splitter With Liquid Crystal,' IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 12, pp. 1349-1353, Nov. 2006 2006. [66] K. Y. Hiroshi Fukuda, Tai Tsuchizawa, Toshifumi Watanabe, Hiroyuki Shinojima and Sei-ichi Itabashi, 'Ultrasmall polarization splitter based on silicon wire waveguides,' OPTICS EXPRESS, vol. 14, pp. 12401-12408, Dec. 2006 2006. [67] Q. W. a. G. Farrell, 'Integrated liquid-crystal switch for both TE and TM modes: proposal and design,' J. Opt. Soc. Am. A, vol. 24, pp. 3303-3308, Oct. 2007 2007. [68] C. Z. Jiangjun Zheng, * Jijun Feng, and Bo Wang, 'Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,' OPTICS LETTERS, vol. 33, pp. 1554-1556, July 2008 2008. [69] H. C. Dirk Taillaert, Peter I. Borel, Lars H. Frandsen, and a. R. B. Richard M. De La Rue, 'A compact two-dimensional grating coupler used as a polarization splitter,' IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 15, pp. 1249-1251, Sep. 2003 2003. [70] E. S. a. I. Golub, 'Polarization splitter/combiner in high index contrast Bragg reflector waveguides,' OPTICS EXPRESS, vol. 11, pp. 3425-3430, Dec. 2003 2003. [71] K. D. Okamoto, Masaaki; Irita, Takeshi; Nakano, Yoshiaki; Tada, Kunio, 'Fabrication of TE/TM Mode Splitter Using Completely Buried GaAs/GaAlAs Waveguide,' Japanese Journal of Applied Physics, vol. 34, p. 151, 1995. [72] W. Pei-Kuen and W. Way-Seen, 'A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,' Photonics Technology Letters, IEEE, vol. 6, pp. 245-248, 1994. [73] P. Chuan, et al., 'Surface micromachined integrated optic polarization beam splitter,' Photonics Technology Letters, IEEE, vol. 10, pp. 988-990, 1998. [74] B. Jalali, et al., 'Advances in silicon-on-insulator optoelectronics,' Selected Topics in Quantum Electronics, IEEE Journal of, vol. 4, pp. 938-947, 1998. [75] D. Dai and S. He, 'Analysis of the birefringence of a silicon-on-insulator rib waveguide,' Appl. Opt., vol. 43, pp. 1156-1161, 2004. [76] R. A. Soref, et al., 'Large single-mode rib waveguides in GeSi-Si and Si-on-SiO<sub>2 </sub>,' Quantum Electronics, IEEE Journal of, vol. 27, pp. 1971-1974, 1991. [77] I. Kiyat, et al., 'High-Q silicon-on-insulator optical rib waveguide racetrack resonators,' Opt. Express, vol. 13, pp. 1900-1905, 2005. [78] Q. Xu, et al., 'Experimental demonstration of guiding and confining light in nanometer-sizelow-refractive-index material,' Opt. Lett., vol. 29, pp. 1626-1628, 2004. [79] T. Baehr-Jones, et al., 'Optical modulation and detection in slotted Silicon waveguides,' Opt. Express, vol. 13, pp. 5216-5226, 2005. [80] C. A. Barrios and M. Lipson, 'Electrically driven silicon resonant light emitting device based on slot-waveguide,' Opt. Express, vol. 13, pp. 10092-10101, 2005. [81] K. K. Lee, et al., 'Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,' Opt. Lett., vol. 26, pp. 1888-1890, 2001. [82] F. Xia, et al., 'Ultracompact optical buffers on a silicon chip,' Nat Photon, vol. 1, pp. 65-71, 2007. [83] Y. Vlasov and S. McNab, 'Losses in single-mode silicon-on-insulator strip waveguides and bends,' Opt. Express, vol. 12, pp. 1622-1631, 2004. [84] P. Dumon, et al., 'Basic photonic wire components in silicon-on-insulator,' ed, 2005. [85] J. Niehusmann, et al., 'Ultrahigh-quality-factor silicon-on-insulator microringresonator,' Opt. Lett., vol. 29, pp. 2861-2863, 2004. [86] A. P. Milos, et al., 'Transparent Wavelength Switching of Resonant Filters,' 2007, p. CPDA2. [87] S. Xiao, et al., 'Compact silicon microring resonators with ultra-low propagation loss in the C band,' Opt. Express, vol. 15, pp. 14467-14475, 2007. [88] S. Xiao, et al., 'Modeling and measurement of losses in silicon-on-insulator resonators and bends,' Opt. Express, vol. 15, pp. 10553-10561, 2007. [89] W. Qian, et al., 'An effective and accurate method for the design of directional couplers,' Selected Topics in Quantum Electronics, IEEE Journal of, vol. 8, pp. 1233-1238, 2002. [90] W.-P. Huang, 'Coupled-mode theory for optical waveguides: an overview,' J. Opt. Soc. Am. A, vol. 11, pp. 963-983, 1994. [91] J. VanRoey, et al., 'Beam-propagation method: analysis and assessment,' J. Opt. Soc. Am., vol. 71, pp. 803-810, 1981. [92] W. Huang, et al., 'The finite-difference vector beam propagation method: analysis and assessment,' Lightwave Technology, Journal of, vol. 10, pp. 295-305, 1992. [93] 'Beamprop, FullWave,' ed. Ossining, New York: Rsoft Design Group, Inc. [94] M. K. Chin and S. T. Ho, 'Design and Modeling of Waveguide-Coupled Single-Mode Microring Resonators,' J. Lightwave Technol., vol. 16, p. 1433, 1998. [95] B. Zhixi, et al., 'InP-based passive ring-resonator-coupled lasers,' Quantum Electronics, IEEE Journal of, vol. 39, pp. 859-865, 2003. [96] L. B. Soldano and E. C. M. Pennings, 'Optical multi-mode interference devices based on self-imaging: principles and applications,' Lightwave Technology, Journal of, vol. 13, pp. 615-627, 1995. [97] D. G. Rabus and M. Hamacher, 'MMI-coupled ring resonators in GaInAsP-InP,' Photonics Technology Letters, IEEE, vol. 13, pp. 812-814, 2001. [98] L. Caruso and I. Montrosset, 'Analysis of a racetrack microring resonator with MMI coupler,' Lightwave Technology, Journal of, vol. 21, pp. 206-210, 2003. [99] 'Apollo Photonic Solutions Suite (APSS2),' ed. Hamilton, Canada: Apollo Photonics. [100] T. Y. L. Ang, et al., 'How small can a microring resonator be and yet be polarization independent?,' Appl. Opt., vol. 48, pp. 2821-2835, 2009. [101] Y. Y. Lin Zhang1*, Yinying Xiao-Li1, Jian Wang1, Raymond G. Beausoleil2, and Alan E. Willner, 'Flat and low dispersion in highly nonlinear slot waveguides,' OPTICS EXPRESS, vol. 18, pp. 13187-13193, June 2010 2010. [102] Lin Zhang, * Yang Yue,1 Raymond G. Beausoleil,2 and Alan E. Willner1, 'Flattened dispersion in silicon slot waveguides,' OPTICS EXPRESS, vol. 18, pp. 20529-20534, Sep. 2010 2010. [103] Yang Yue, * Lin Zhang,1 Jeng-Yuan Yang,1 Raymond G. Beausoleil,2 and Alan E. Willner1, 'Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,' OPTICS LETTERS, vol. 35, pp. 1364-1366, May 2010 2010. [104] P. M. a. R. Hainberger, 'Structural Optimization of Silicon-On-Insulator Slot Waveguides,' IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 18, pp. 2557-2559, Dec. 2006 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46783 | - |
| dc.description.abstract | 在本論文中,一種狹縫波導結構已被成功運用來解決設計基礎絕緣上矽的波導原件中,所衍生極化相依性的問題。藉由精確控制狹縫波導的極化相依性,在此發表一個由狹縫波導構成,極化不相依的雙通道定向耦合器。在垂直狹縫的結構下,原件耦合區域長度可小至23.13 μm 並同時達到消光比大於22 dB以及1-dB頻寬大於100 nm的絕佳效能。而在水平狹縫的結構下,原件耦合區域長度可小至27.33 μm 並同時達到消光比大於27 dB以及1-dB頻寬約200 nm的絕佳效能。對於以上兩者其製程誤差的容忍度也有著墨探討。
更進一步的,先前章節中所發表的極化不相依耦合器,已被應用於實現一個由絕緣上矽狹縫波導所構成、極化不相依的跑道型微環狀共振器;並可藉由狹縫波導幾何結構的最佳化過程,以於寬頻寬範圍內維持一個無極化模態色散的運作。二種相互垂直的極化模態其頻譜響應不僅在操作波長相同,並且於C-band及L-band範圍內的共振波長差,如果是在以垂直狹縫結構來設計元件下可小於0.1 nm,而在以水平狹縫結構來設計元件下可小於0.25 nm。此元件的自由頻譜範圍可以達到大於10 nm ,並同時維持一個小於 30 μm的緊密原件尺寸。就目前所知,這是第一個以狹縫波導結構設計的微環狀共振器,可以達到如此無極化模態色散的絕佳效能。 | zh_TW |
| dc.description.abstract | In this dissertation, slot waveguide structures are successfully employed to overcome the problem of polarization dependence in designing fundamental silicon-on-insulator waveguide-based components. Through controlling of the polarization dependence of the slot waveguide, a polarization-independent dual channel directional coupler formed by slot waveguides is proposed. For vertical slot, the length of the coupling region of the device is 23.13 μm while delivering the good performance with the extinction ratio of more than 22 dB and 1-dB bandwidth of larger than 100 nm. For horizontal slot, the length of the coupling region of the device is 27.33 μm while delivering the good performance with the extinction ratio of more than 27 dB and 1-dB bandwidth of around 200 nm. The tolerance of the fabrication error on the practical device is also discussed.
Furthermore, the polarization-independent coupler proposed previously is employed to realize a polarization-independent racetrack type micro-ring resonator formed by silicon-on-insulator slot waveguides as well, in which the polarization-mode dispersion-free operation can be perfectly maintained over a wide spectral range by optimizing the slot waveguide geometry. The spectral responses for both polarization modes are nearly identical not only around the designed operating wavelength but also over C- and L-band with a resonance wavelength mismatch between the two orthogonal polarization modes less than 0.1 nm for vertical slot, and less than 0.25 nm for horizontal slot waveguide structures. The free spectral range of more than 10 nm can be achieved as well as a compact device size of less than 30 μm. To the knowledge it is the first micro-ring resonator that achieves such an excellent polarization-mode dispersion-free operation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:41:28Z (GMT). No. of bitstreams: 1 ntu-100-F94941019-1.pdf: 10182013 bytes, checksum: bb764ea1e021cbde0b1ede877f9e5f8b (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Index
口試委員會審定書 i 誌謝 ii 摘要 iv Abstract v Index vi Figure Index x Table Index xvii Chapter 1. Introduction 1 1. 1. Historical review of integrated optics 2 1. 2. Polarization of light 4 1.2.1 Polarization basics 5 1.2.2 The polarization ellipse 6 1.2.3 Transverse electric and magnetic modes 8 1.2.4 Polarization-dependent problems in transmission 9 1. 3. Polarization-mode dispersion 11 1. 4. Fundamental components 13 1.4.1 Directional coupler 13 1.4.2 Micro-ring resonator 15 1. 5. Motivation 18 Chapter 2. Theoretical Background 21 2. 1. Optical waveguide principle 21 2.1.1 Rectangular waveguides 23 2.1.2 Slot waveguides 26 2. 2. Coupled-mode theory 32 2.2.1 Coupling of modes in time 32 2.2.2 Coupling of modes in space 33 2. 3. Simulation methods 34 2.3.1 Beam propagation method 34 2.3.2 Finite difference time domain method 37 2. 4. Dispersion 40 Chapter 3. Literature Review 42 3. 1. Control polarization of directional couplers 42 3.1.1 Introduction of polarization splitters 42 3.1.2 Design of polarization splitters 43 3.1.3 Summary 47 3. 2. Apply slot waveguide in micro-ring resonator 48 3.2.1 Introduction of micro-ring resonators 48 3.2.2 Design of micro-ring resonators 50 3.2.3 Experimental results and analysis 52 3.2.4 Utilization of slot waveguides 57 3.2.5 Summary 58 Chapter 4. Control of the Polarization Dependence of a Directional Coupler Formed by Vertical Slot Waveguides 59 4. 1. Design of the vertical slot waveguide 59 4. 2. Supermode theory 62 4. 3. Design of a polarization beam splitter formed by vertical slot waveguides 66 4. 4. Design of a polarization-independent directional coupler formed by vertical slot waveguides 70 4. 5. Discussion and summary 73 Chapter 5. Design of a Micro-Ring Resonator Formed by PMD-Free Vertical Slot Waveguides Operating Over a Wide Spectral Range 77 5. 1. Zero birefringence condition 78 5. 2. Polarization-mode dispersion-free operation 82 5. 3. Polarization-independent directional coupling 84 5. 4. Simulation results and discussion 87 5.5. Summary 90 Chapter 6. Control of the Polarization Dependence of a Directional Coupler Formed by Horizontal Slot Waveguides 92 6. 1. Design of the horizontal slot waveguide 92 6. 2. Supermode theory 94 6. 3. Design of a polarization beam splitter formed by horizontal slot waveguides 98 6. 4. Design of a polarization-independent directional coupler formed by horizontal slot waveguides 102 6. 5. Discussion and summary 104 Chapter 7. Design of a Micro-Ring Resonator Formed by PMD-Free Horizontal Slot Waveguides Operating Over a Wide Spectral Range 108 7. 1. Zero birefringence condition 108 7. 2. Polarization-mode dispersion-free operation 112 7. 3. Polarization-independent directional coupling 114 7. 4. Simulation results and discussion 117 Chapter 8. Conclusion and Future 122 8. 1. Conclusion 122 8. 2. Future work 123 References 124 Biography and Publication 131 Education 131 Journal 131 Conference 132 Work 133 Honor 133 | |
| dc.language.iso | en | |
| dc.subject | 微環狀共振器 | zh_TW |
| dc.subject | 狹縫波導 | zh_TW |
| dc.subject | 絕緣上矽 | zh_TW |
| dc.subject | 極化相依性 | zh_TW |
| dc.subject | 極化模態色散 | zh_TW |
| dc.subject | 定向耦合器 | zh_TW |
| dc.subject | polarization-mode dispersion | en |
| dc.subject | micro-ring resonator | en |
| dc.subject | slot waveguide | en |
| dc.subject | silicon-on-insulator | en |
| dc.subject | polarization dependence | en |
| dc.subject | directional coupler | en |
| dc.title | 應用狹縫波導結構控制絕緣上矽波導之極化相依性 | zh_TW |
| dc.title | Controlling the Polarization Dependence of SOI Waveguides by Using Slot Waveguide Structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 魏培坤(Pei-Kuen Wei),王子建(Tz-Jian Wang),林晃嚴(Huang-Yan Lin),王維新(Wei-Seen Wang) | |
| dc.subject.keyword | 狹縫波導,絕緣上矽,極化相依性,極化模態色散,定向耦合器,微環狀共振器, | zh_TW |
| dc.subject.keyword | slot waveguide,silicon-on-insulator,polarization dependence,polarization-mode dispersion,directional coupler,micro-ring resonator, | en |
| dc.relation.page | 133 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 9.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
