請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46770完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳哲夫(Jeffrey D. Ward) | |
| dc.contributor.author | Ya-Ling Cheng | en |
| dc.contributor.author | 鄭雅玲 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:28:42Z | - |
| dc.date.available | 2010-07-16 | |
| dc.date.copyright | 2010-07-16 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-15 | |
| dc.identifier.citation | [1] 柯賢文. 未來的氫能經濟. 科學發展 2006(399):68-75.
[2] US Department of Energy. Proceeding of 2005 US DOE Hydrogen Program Review, 2005. http://www.hydrogen.energy.gov/annual_review05_storage.html#p_hydride [3] Amendola SC, Sharp-Goldman SL, Janjua MS, Spencer NC, Kelly MT, Petillo PJ, et al. A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. International Journal of Hydrogen Energy 2000;25(10):969-75. [4] Prosini PP, Gislon P. A hydrogen refill for cellular phone. Journal of Power Sources 2006;161(1):290-93. [5] Amendola SC, Sharp-Goldman SL, Janjua MS, Kelly MT, Petillo PJ, Binder M. An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources 2000;85(2):186-89. [6] Zhang JS, Zheng Y, Gore JP, Fisher TS. 1 kW(e) sodium borohydride hydrogen generation system Part I: Experimental study. Journal of Power Sources 2007;165(2):844-53. [7] Dong H, Yang HX, Ai XP, Cha CS. Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst. International Journal of Hydrogen Energy 2003;28(10):1095-100. [8] Kojima Y, Kawai Y, Nakanishi H, Matsumoto S. Compressed hydrogen generation using chemical hydride. Journal of Power Sources 2004;135(1-2):36-41. [9] Liu BH, Li ZP, Suda S. Solid sodium borohydride as a hydrogen source for fuel cells. Journal of Alloys and Compounds 2009;468(1-2):493-98. [10] Gislon P, Monteleone G, Prosini PP. Hydrogen production from solid sodium borohydride. International Journal of Hydrogen Energy 2009;34(2):929-37. [11] Marrero-Alfonso EY, Gray JR, Davis TA, Matthews MA. Hydrolysis of sodium borohydride with steam. International Journal of Hydrogen Energy 2007;32(18):4717-22. [12] Marrero-Alfonso EY, Gray JR, Davis TA, Matthews MA. Minimizing water utilization in hydrolysis of sodium borohydride: The role of sodium metaborate hydrates. International Journal of Hydrogen Energy 2007;32(18):4723-30. [13] Liu BH, Li ZP, Chen LL. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH4-air battery. Journal of Power Sources 2008;180(1):530-34. [14] Hung A-J. Design and Control of Proton Exchange Membrane Fuel Cell Systems. Ph. D. Dissertation. National Taiwan University, 2009. [15] Zhang JS, Fisher TS, Gore JP, Hazra D, Ramachandran PV. Heat of reaction measurements of sodium borohydride alcoholysis and hydrolysis. International Journal of Hydrogen Energy 2006;31(15):2292-98. [16] Zhang JS, Zheng Y, Gore JP, Mudawar I, Fisher TS. 1 kW(e) sodium borohydride hydrogen generation system Part II: Reactor modeling. Journal of Power Sources 2007;170(1):150-59. [17] Cloutier CR, Alfantazi A, Gyenge E. Physicochemical properties of alkaline aqueous sodium metaborate solutions. Journal of Fuel Cell Science and Technology 2007;4(1):88-98. [18] Hung AJ, Tsai SF, Hsu YY, Ku JR, Chen YH, Yu CC. Kinetics of sodium borohydride hydrolysis reaction for hydrogen generation. International Journal of Hydrogen Energy 2008;33(21):6205-15. [19] Gervasio D, Tasic S, Zenhausern F. Room temperature micro-hydrogen-generator. Journal of Power Sources 2005;149:15-21. [20] Kojima Y, Suzuki K, Fukumoto K, Kawai Y, Kimbara M, Nakanishi H, et al. Development of 10 kW-scale hydrogen generator using chemical hydride. Journal of Power Sources 2004;125(1):22-26. [21] Ballard Power Systems Inc. Distributed Power Generation. Fuel Cell Benefits http://www.ballard.com/files/pdf/Case_Studies/DPG_FCgen_California.pdf [22] Frank P, Incroperal, David P, DeWitt. Fundamentals of Heat and Mass Transfer Author, ed. 5: Wiley Publication, 2001. [23] Thermopedia. A-to-Z guide to Thermodynamics, Heat & Mass Transfer, and Fluids Engineering. Gas-Liquid Flow. http://www.thermopedia.com/toc/chapt_g/GAS-LIQUID_FLOW.html [24] Mulder M. Basic principles of membrane technology. Boston: Kluwer academic, 1991. [25] Luyben W. Chemical reactor design and control. New Jersey: Wiley-Interscience, 2007. [26] Ziegler JG, Nichols NB. Optimum Settings for Automatic Controllers. ASME Transactions 1972;64:759.. [27] Yu CC. Autotuning of PID controllers. London: Springer, 1999. [28] US Department of Energy. Office of Hyodrgen, Fuel Cells, and Infrastructure Technologies. Multi-year research, development and demonstration plan. 2009. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/storage.pdf. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46770 | - |
| dc.description.abstract | 世界能源正面臨一個新的轉捩點,在能源消費結構中,開始從石油為主要能源逐步向多元能源結構過度,氫能源便是替代能源中極受囑目之一。使用氫能源的一大問題的氫氣的儲存,其中化學儲氫法的硼氫化鈉(NaBH4)具有潛力達到美國能源局(DOE)所訂定的2015年儲氫系統能源密度標準(5.5wt%) [28]。
此篇研究係建立硼氫化鈉(NaBH4)連續式產氫系統之數學模式,以描述該系統的行為,在等溫、絕熱、部份熱移除等不同的操作狀態下,探討反應器不同的熱移除量與系統儲氫量之關聯。在連續式產氫系統中,偏硼酸鈉(NaBO2)的濃度會受到高反應熱釋出所產生的大量水蒸氣之影響,而較高的反應器出口溫度可以有效提升NaBO2飽和溶解度,因此產氫系統傾向操作在部份熱移除的情況下,會有較好的能量密度表現。接著,為了解決大量氣體(包括水蒸氣和氫氣)充滿塞流式反應器,造成NaBH4溶液無法有效與觸媒表面活性位置接觸之問題,本研究同時提出一個新的反應器設計架構,即在塞流式反應器中,增設一層針孔膜,藉此分離出液相與氣相通道,使NaBH4水解反應更易進行,並可省去裝設氣液分離器的重量,進一步增加系統的能量密度。 此外,本研究針對控制目標,即加快氫氣產能需求改變時之動態響應,並避免NaBO2析出的問題,提出了二個控制架構如下,一、以進料當作產能調節變數;二、以氫氣出口流量做為產能調節變數。在此二種控制架構下,當氫氣需求量改變時,皆無NaBO2析出的問題,並且氫氣流量皆獲得合理的動態響應。 為了使產氫系統能即時、快速地供應燃料電池使用,本研究建立之冷進料的啟動策略係脈衝連結一階式的進料形態,在絕熱環境下操作,並且結合前次啟動後儲存在反應器中的氫氣,使硼氫化鈉(NaBH4)產氫系統達到DOE的目標啟動時間(即5~15秒) [28]。 | zh_TW |
| dc.description.abstract | NaBH4 hydrolysis for on-board hydrogen generation has received much attention recently due to its higher theoretical energy capacity and zero emissions. In this work, three different operating modes (adiabatic, isothermal, Partially-insulated) of a continuous hydrogen generation system using the NaBH4 hydrolysis reaction are explored. Partially-insulated operation is recommended for this system since it has a higher outlet temperature and lower temperature distribution in reactor, which both mitigate the NaBO2 precipitation problem so that a larger energy density can be achieved. A novel reactor design is proposed to overcome the effects of gas generation and multiphase flow from the NaBH4 hydrolysis reaction. With a pinhole membrane set in the middle of reactor tube to provide gas and liquid channels respectively, the multi-phase flow problem is reduced and energy capacity increased since a separator is not needed for gas-liquid separation. Next, two control structures are developed and both give reasonable dynamic results. The on-supply structure gives fast response while the on-demand structure provides a simple control loop to adjust hydrogen generation directly. After control policies are designed, a cold start-up strategy is developed using a pulse plus step function feed input and reserved hydrogen from previous reaction to give rapid and sufficient hydrogen gas to supply a PEM fuel cell. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:28:42Z (GMT). No. of bitstreams: 1 ntu-99-R97524023-1.pdf: 1949723 bytes, checksum: ae1d7026bdb352d89d6a80602f9a3b19 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝 I
Abstract III 摘要 V Contents VII List of Figures XI List of Tables XV 1. Introduction 1 1.1. Overview 1 1.2. Literature survey 3 1.2.1. NaBH4 aqueous solution 4 1.2.2. Solid NaBH4 reacts with liquid water 5 1.2.3. Solid NaBH4 reacts with water vapor 5 1.2.4. NaBH4 gel 6 1.3. Motivation 6 1.4. Organization of thesis 6 2. Operation analysis of a hydrogen generation system 8 2.1. Overview 8 2.2. Process description 8 2.3. Steady-state model of a hydrogen generation reactor 9 2.3.1. Model assumptions 9 2.3.2. Modeling equations 10 2.3.3. Kinetic model 14 2.4. Process constraints 14 2.5. Isothermal operation 16 2.5.1. Steady-state component profile 16 2.5.2. Operability analysis 17 2.5.3. Optimization of operating variables 19 2.5.4. Summary of isothermal operation 22 2.6. Adiabatic operation 22 2.6.1. Steady-state component profile 22 2.6.2. Operability analysis 23 2.6.3. Optimization of operating variables 26 2.6.4. Summary of adiabatic operation 27 2.7. Hints from analysis of isothermal and adiabatic operations 28 2.7.1. Partially-insulated operation 28 2.7.2. Ratio of heat loss in partially-insulated operation 29 2.7.3. Optimization of operating variables 30 2.7.4. Partially-insulated reactor system with optimal design 32 2.7.5. Summary of partially-insulated operation 36 2.8. Conclusions 37 3. Design of hydrogen generation reactor 40 3.1. Overview 40 3.2. Gas-liquid mixing phenomenon in reactor from hydrolysis reaction 40 3.2.1. Multi-phase and multi-component flow in reactor 40 3.2.2. Types of gas-liquid flow pattern 41 3.2.3. Problems in a high gas volume flow in reactor 43 3.3. A novel design of reactor 44 3.3.1. Design of tubular reactor 44 3.3.2. Design of pinhole membrane 46 3.4. Advantages in novel design of tubular reactor 50 3.5. Conclusions 51 4. Control of hydrogen generation system 53 4.1. Overview 53 4.2. Dynamic model of hydrogen generation reactor 53 4.2.1. Model assumptions 53 4.2.2. Dynamic model equations 54 4.3. Control structure design 56 4.3.1. On-supply control structure 56 4.3.2. On-demand control structure 57 4.3.3. Dynamic results 58 4.4. Conclusions 65 5. Start-up strategy of hydrogen generation system 69 5.1. Overview 69 5.2. DOE target in start-up time for hydrogen storage system 69 5.3. Start-up strategy 71 5.3.1. Operation of reactor in start-up stage 71 5.3.2. Types of feed input 71 5.3.3. Dynamic results in start-up stage 73 5.3.4. Aid with reservation of hydrogen from previous reaction 77 5.4. Conclusions 78 6. Conclusions 80 References 81 Autobiography 85 | |
| dc.language.iso | en | |
| dc.subject | 啟動 | zh_TW |
| dc.subject | 儲氫 | zh_TW |
| dc.subject | 程序設計 | zh_TW |
| dc.subject | 模式化 | zh_TW |
| dc.subject | 控制 | zh_TW |
| dc.subject | process design | en |
| dc.subject | hydrogen storage | en |
| dc.subject | modeling | en |
| dc.subject | control | en |
| dc.subject | start-up | en |
| dc.title | 硼氫化鈉水解產氫系統之設計與控制 | zh_TW |
| dc.title | Design and Control of a Hydrogen Generation System using the Sodium Borohydride Hydrolysis Reaction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳逸航(Yih-Hung Chen) | |
| dc.contributor.oralexamcommittee | 陳奇中(Chyi-Tsong Chen),鄭西顯(Shi-Shang Jang) | |
| dc.subject.keyword | 儲氫,程序設計,模式化,控制,啟動, | zh_TW |
| dc.subject.keyword | hydrogen storage,process design,modeling,control,start-up, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
