Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46760
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊振義(Jehn-Yih Juang)
dc.contributor.authorMin-Sheng Hungen
dc.contributor.author洪敏勝zh_TW
dc.date.accessioned2021-06-15T05:28:02Z-
dc.date.available2010-07-20
dc.date.copyright2010-07-20
dc.date.issued2010
dc.date.submitted2010-07-15
dc.identifier.citation吳致甄 (2009) 棲蘭山通量站二氧化碳通量資料補遺方法之比較,國立東華大學自然資源管理研究所碩士論文。
陳凱欣 (2005) 鴛鴦湖台灣扁柏森林生物量與冠層結構,國立東華大學自然資源管理研究所碩士論文。
陳耀德 (2003) 鴛鴦湖森林生態系大氣養分輸入之探討,國立東華大學自然資源管理研究所碩士論文。
曾桂香 (2006) 棲蘭山區台灣扁柏森林土壤呼吸之探討,國立東華大學自然資源管
理研究所碩士論文。
褚侯森 (2008) 複雜地形中的通量量測-以棲蘭山台灣扁柏森林樣區為例,國立東華大學自然資源管理研究所碩士論文。
Aubinet, M. (2003) Horizontal and vertical CO2 advection in a sloping forest. Boundary-Layer Meteorology, 108(3): 397-417.
Aubinet, M. (2008) Eddy covariance CO2 flux measurements in nocturnal conditions: An analysis of the problem. Ecological Applications, 18(6): 1368-1378.
Aubinet, M., Berbigier, P., Bernhofer, C. H., Cescatti, A., Feigenwinter, C., Granier, A., Grunwald, T. H., Havrankova, K., Heinesch, B., Longdoz, B., Marcolla, B., Montagnani, L., and Sedlak, P. (2005) Comparing CO2 storage and advection conditions at night at different carboeuroflux sites. Boundary-Layer Meteorology, 116(1): 63-94.
Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Laitat, E. (2001) Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agricultural and Forest Meteorology, 108(4): 293-315.
Aubinet, M., Feigenwinter, C., Heinesch, B., Bernhofer, C., Canepa, E., Lindroth, A., Montagnani, L., Rebmann, C., Sedlak, P., and Van Gorsel, E. (2010) Direct advection measurements do not help to solve the night-time CO2 closure problem: Evidence from three different forests. Agricultural and Forest Meteorology, 150(5): 655-664.
Baldocchi, D. D. (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4): 479-492.
Baldocchi, D. D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., Malhi, Y., Meyers, T., Munger, W., Oechel, W., U, K. T. P., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S. (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82(11): 2415-2434.
Baldocchi, D. D., Finnigan, J., Wilson, K., Paw U, K. T., and Falge, E. (2000) On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorology, 96(1-2): 257-291.
Baldocchi, D. D., Valentini, R., Running, S., Oechel, W., and Dahlman, R. (1996) Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Global Change Biology, 2(3): 159-168.
Baldocchi, D. D., and Vogel, C. A. (1996) Energy and CO2 flux densities above and below a temperate broad-leaved forest and a boreal pine forest. Tree Physiology, 16(1-2): 5-16.
Boussinesq, J. (1903) Theorie analytique de la chaleur. Gauthier-Villars, 2: 154-176.
Canadell, J. G., Mooney, H. A., Baldocchi, D. D., Berry, J. A., Ehleringer, J. R., Field, C. B., Gower, S. T., Hollinger, D. Y., Hunt, J. E., Jackson, R. B., Running, S. W., Shaver, G. R., Steffen, W., Trumbore, S. E., Valentini, R., and Bond, B. Y. (2000) Carbon metabolism of the terrestrial biosphere: A multitechnique approach for improved understanding. Ecosystems, 3(2): 115-130.
Carpenter, S. R., Frost, T. M., Heisey, D., and Kratz, T. K. (1989) Randomized intervention analysis and the interpretation of whole-ecosystem experiments. Ecology, 70(4): 1142-1152.
Chapin, F. S., Matson, P. A., and Mooney, H. A. (2002) Principles of terrestrial ecosystem ecology, New York: Springer
Chen, B. Z., Chen, J. M., Mo, G., Black, A., and Worthy, D. E. J. (2008) Comparison of regional carbon flux estimates from CO2 concentration measurements and remote sensing based footprint integration. Global Biogeochemical Cycles, 22(2): GB2012.
Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M. C., and Wisniewski, J. (1994) Carbon pools and flux of global forest ecosystems. Science, 263(5144): 185-190.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grunwald, T., Hollinger, D., Jensen, N. O., Katul, G., Keronen, P., Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, H., Moors, E., Munger, J. W., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S. (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107(1): 43-69.
Falge, E., Tenhunen, J., Baldocchi, D., Aubinet, M., Bakwin, P., Berbigier, P., Bernhofer, C., Bonnefond, J. M., Burba, G., Clement, R., Davis, K. J., Elbers, J. A., Falk, M., Goldstein, A. H., Grelle, A., Granier, A., Grunwald, T., Gudmundsson, J., Hollinger, D., Janssens, I. A., Keronen, P., Kowalski, A. S., Katul, G., Law, B. E., Malhi, Y., Meyers, T., Monson, R. K., Moors, E., Munger, J. W., Oechel, W., U, K. T. P., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Thorgeirsson, H., Tirone, G., Turnipseed, A., Wilson, K., and Wofsy, S. (2002) Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 113(1-4): 75-95.
FAO (2006). Global Forest Resources Assessment 2005: Progress towards sustainable forest management. Rome: Food and Agriculture Organization of the United Nations.
Feigenwinter, C., Bernhofer, C., Eichelmann, U., Heinesch, B., Hertel, M., Janous, D., Kolle, O., Lagergren, F., Lindroth, A., Minerbi, S., Moderow, U., Molder, M., Montagnani, L., Queck, R., Rebmann, C., Vestin, P., Yernaux, M., Zeri, M., Ziegler, W., and Aubinet, M. (2008) Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agricultural and Forest Meteorology, 148(1): 12-24.
Feigenwinter, C., Bernhofer, C., and Vogt, R. (2004) The influence of advection on the short term CO2-budget in and above a forest canopy. Boundary-Layer Meteorology, 113(2): 201-224.
Feigenwinter, C., Montagnani, L., and Abinet, M. (2009) Plot-scale vertical and horizontal transport of CO2 modified by a persistent slope wind system in and above an alpine forest. Agricultural and Forest Meteorology, In Press, Corrected Proof.
Finnigan, J. J. (1999) A comment on the paper by Lee (1998): 'On micrometeorological observations of surface-air exchange over tall vegetation'. Agricultural and Forest Meteorology, 97(1): 55-64.
Finnigan, J. J. (2006) The storage term in eddy flux calculations. Agricultural and Forest Meteorology, 136(3-4): 108-113.
Finnigan, J. J. (2008) An introduction to flux measurements in difficult conditions. Ecological Applications, 18(6): 1340-1350.
Finnigan, J. J., and Belcher, S. E. (2004) Flow over a hill covered with a plant canopy. Quarterly Journal of the Royal Meteorological Society, 130(596): 1-29.
Finnigan, J. J., Clement, R., Malhi, Y., Leuning, R., and Cleugh, H. A. (2003) A re-evaluation of long-term flux measurement techniques part I: averaging and coordinate rotation. Boundary-Layer Meteorology, 107(1): 1-48.
Foken, T., Goockede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger, W. (2004) Post-field data quality control. Handbook of Micrometeorology: 181-208.
Foken, T., and Wichura, B. (1996) Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology, 78(1-2): 83-105.
Froelich, N. J., and Schmid, H. P. (2006) Flow divergence and density flows above and below a deciduous forest: Part II. Below-canopy thermotopographic flows. Agricultural and Forest Meteorology, 138(1-4): 29-43.
Froelich, N. J., Schmid, H. P., Grimmond, C. S. B., Su, H. B., and Oliphant, A. J. (2005) Flow divergence and density flows above and below a deciduous forest: Part I. Non-zero mean vertical wind above canopy. Agricultural and Forest Meteorology, 133(1-4): 140-152.
Geider, R. J., Delucia, E. H., Falkowski, P. G., Finzi, A. C., Grime, J. P., Grace, J., Kana, T. M., La Roche, J., Long, S. P., and Osborne, B. A. (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Global Change Biology, 7(8): 849-882.
Heinesch, B. (2007) Some methodological questions concerning advection measurements: a case study. Boundary-Layer Meteorology, 122(2): 457-478.
Horst, T. W., and Doran, J. C. (1986) Nocturnal drainage flow on simple slopes. Boundary-Layer Meteorology, 34(3): 263-286.
Katul, G. G., Finnigan, J. J., Poggi, D., Leuning, R., and Belcher, S. E. (2006) The influence of hilly terrain on canopy-atmosphere carbon dioxide exchange. Boundary-Layer Meteorology, 118(1): 189-216.
Kutsch, W. L., Kolle, O., Rebmann, C., Knohl, A., Ziegler, W., and Schulze, E. D. (2008) Advection and resulting CO2 exchange uncertainty in a tall forest in central Germany. Ecological Applications, 18(6): 1391-1405.
Laurance, W. F., and Williamson, G. B. (2001) Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conservation Biology, 15(6): 1529-1535.
Law, B. E., Baldocchi, D. D., and Anthoni, P. M. (1999) Below-canopy and soil CO2 fluxes in a ponderosa pine forest. Agricultural and Forest Meteorology, 94(3-4): 171-188.
Lee, X. (1998) On micrometeorological observations of surface-air exchange over tall vegetation. Agricultural and Forest Meteorology, 91(1-2): 39-49.
Lee, X., Finnigan, J., and Paw U, K. T. (2004) Coordinate systems and flux bias error. Handbook of Micrometeorology: 33-66.
Leuning, R., Zegelin, S. J., Jones, K., Keith, H., and Hughes, D. (2008) Measurement of horizontal and vertical advectlion of CO2 within a forest canopy. Agricultural and Forest Meteorology, 148(11): 1777-1797.
Mahrt, L. (1982) Momentum balance of gravity flows. Journal of the Atmospheric Sciences, 39(12): 2701-2711.
Mahrt, L. (1986) On the shallow motion approximations. Journal of the Atmospheric Sciences, 43(10): 1036-1044.
Mahrt, L. (1998) Flux sampling errors for aircraft and towers. Journal of Atmospheric and Oceanic Technology, 15(2): 416-429.
Mahrt, L., Lee, X., Black, A., Neumann, H., and Staebler, R. M. (2000) Nocturnal mixing in a forest subcanopy. Agricultural and Forest Meteorology, 101(1): 67-78.
Mahrt, L., Vickers, D., Nakamura, R., Soler, M. R., Sun, J. L., Burns, S., and Lenschow, D. H. (2001) Shallow drainage flows. Boundary-Layer Meteorology, 101(2): 243-260.
Marcolla, B., Cescatti, A., Montagnani, L., Manca, G., Kerschbaumer, G., and Minerbi, S. (2005) Importance of advection in the atmospheric CO2 exchanges of an alpine forest. Agricultural and Forest Meteorology, 130(3-4): 193-206.
Massman, W. J., and Lee, X. (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricultural and Forest Meteorology, 113(1-4): 121-144.
McCaughey, J. H., Pejam, M. R., Arain, M. A., and Cameron, D. A. (2006) Carbon dioxide and energy fluxes from a boreal mixedwood forest ecosystem in Ontario, Canada. Agricultural and Forest Meteorology, 140(1-4): 79-96.
Meehl, G. A., Washington, W. M., Collins, W. D., Arblaster, J. M., Hu, A., Buja, L. E., Strand, W. G., and Teng, H. (2005) How much more global warming and sea level rise? Science, 307(5716): 1769-1172.
Mizoguchi, Y., Miyata, A., Ohtani, Y., Hirata, R., and Yuta, S. (2009) A review of tower flux observation sites in Asia. Journal of Forest Research, 14(1): 1-9.
Moderow, U., Feigenwinter, C., and Bernhofer, C. (2007) Estimating the components of the sensible heat budget of a tall forest canopy in complex terrain. Boundary-Layer Meteorology, 123(1): 99-120.
Moncrieff, J. B., Malhi, Y., and Leuning, R. (1996) The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water. Global Change Biology, 2(3): 231-240.
Oke, T. R. (1987) Boundary layer climates, New York: Routledge.
Paw U, K. T., Baldocchi, D. D., Meyers, T. P., and Wilson, K. B. (2000) Correction of eddy-covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorology, 97(3): 487-511.
Raupach, M. R., Rayner, P. J., Barrett, D. J., DeFries, R. S., Heimann, M., Ojima, D. S., Quegan, S., and Schmullius, C. C. (2005) Model-data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications. Global Change Biology, 11(3): 378-397.
Reynolds, O. (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 451(1941): 5-47.
Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P. S., and Hibbard, K. A. (1999) A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing of Environment, 70(1): 108-127.
Saigusa, N., Yamamoto, S., Hirata, R., Ohtani, Y., Ide, R., Asanuma, J., Gamo, M., Hirano, T., Kondo, H., Kosugi, Y., Li, S. G., Nakai, Y., Takagi, K., Tani, M., and Wang, H. M. (2008) Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agricultural and Forest Meteorology, 148(5): 700-713.
Saigusa, N., Yamamoto, S., Murayama, S., and Kondo, H. (2005) Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agricultural and Forest Meteorology, 134(1-4): 4-16.
Schmid, H. P. (2002) Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agricultural and Forest Meteorology, 113(1-4): 159-183.
Schotanus, P., Nieuwstadt, F. T. M., and Debruin, H. A. R. (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorology, 26(1): 81-93.
Sedlak, P., Aubinet, M., Heinesch, B., Janous, D., Pavelka, M., Potuznikova, K., and Yernaux, M. (2010) Night-time airflow in a forest canopy near a mountain crest. Agricultural and Forest Meteorology, 150(5): 736-744.
Staebler, R. M., and Fitzjarrald, D. R. (2004) Observing subcanopy CO2 advection. Agricultural and Forest Meteorology, 122(3-4): 139-156.
Stull, R. B. (1988) An introduction to boundary layer meteorology, Dordrecht: Kluwer Academic.
Sun, J. L., Burns, S. P., Delany, A. C., Oncley, S. P., Turnipseed, A. A., Stephens, B. B., Lenschow, D. H., LeMone, M. A., Monson, R. K., and Anderson, D. E. (2007) CO2 transport over complex terrain. Agricultural and Forest Meteorology, 145(1-2): 1-21.
Suyker, A. E., Verma, S. B., and Burba, G. G. (2003) Interannual variability in net CO2 exchange of a native tallgrass prairie. Global Change Biology, 9(2): 255-265.
Tanner, C. B., and Thurtell, G. W. (1969). Anemoclinometer measurements of reynolds stress and heat transport in the atmospheric surface layer: University of Wisconsin Tech. Rep., ECOM-66-G22-F, 82 pp. [Available from US Army Electronic Command, Atmospheric Sciences Laboratory, Ft. Huachuca, AZ 85613.].
Taylor, G. I. (1938) The spectrum of turbulence. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 164(A919): 0476-0490.
Vickers, D. (1997) Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, 14(3): 512-526.
Webb, E. K., Pearman, G. I., and Leuning, R. (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106(447): 85-100.
Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H. R. (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309(5742): 1844-1846.
Wilczak, J. M. (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology, 99(1): 127-150.
Yi, C. (2000) Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2. Journal of Geophysical Research - Atmospheres, 105(D8): 9991.
Yi, C., Anderson, D. E., Turnipseed, A. A., Burns, S. P., Sparks, J. P., Stannard, D. I., and Monson, R. K. (2008) The contribution of advective fluxes to net ecosystem exchange in a high-elevation, subalpine forest. Ecological Applications, 18(6): 1379-1390.
Yi, C., Monson, R. K., Zhai, Z. Q., Anderson, D. E., Lamb, B., Allwine, G., Turnipseed, A. A., and Burns, S. P. (2005) Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain. Journal of Geophysical Research-Atmospheres, 110(D22).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46760-
dc.description.abstract架設通量觀測塔以「渦流相關法」(eddy-covariance method, EC)技術,針對生態系與大氣之間物質或能量交換進行長期且連續的直接量測,已經成為學界探討碳循環問題的重要方法。但實際的現地條件(如地形、冠層結構與氣象條件)通常難以符合EC的基本假設,進而造成通量量測的不確定性。已有許多研究指出,在高大森林樣區及山坡地形下,容易形成複雜的空氣流場而對通量量測造成影響。此外,特別在大氣較為穩定的夜晚時段,可能因平流效應或斜坡地形導致的泄流作用而造成通量量測的低估,而森林的冠層結構造成複雜的風場分布亦增加通量量測的困難。
棲蘭山通量研究站位於台灣東北部,為一典型的亞熱帶雲霧森林,目前有一通量觀測塔(離地24m高)於2006年起持續進行長期的通量觀測。本研究於2009年9月起,於棲蘭山森林樣區的森林次冠層架設兩座高約2公尺的小塔於斜坡地形上,試圖量化森林次冠層的通量傳輸特徵,以提供未來修正冠層上方通量數據的參考。研究結果發現,棲蘭山過去的通量計算中,關於平均垂直風速明顯系統性的正偏(約0.05m s-1),主要來自於平面擬合法中迴歸係數的計算偏差。使用特定月份的風速資料所計算的迴歸係數,無法用來計算全年的通量資料。棲蘭山森林次冠層的風場有其空間變異的特性,並明顯反應在通量特徵的差異。棲蘭山森林次冠層的可感熱通量因冠層結構影響熱力分布特性而與與冠層上方呈現相反趨勢。森林次冠層的動量水平平流通量與森林次冠層的垂直風速有關,在大氣狀況相對穩定的夜晚時段,呈現負值垂直風速時,同時出現較明顯往下坡處運動的動量水平流通量,顯示夜間重力泄流的確是影響棲蘭山樣區通量估算的不確定來源。
zh_TW
dc.description.abstractThe tower-based eddy- covariance (EC) flux measurement could provide a reliable way to quantify the exchange of scalars, energy and momentum across the interface between the atmosphere and the terrestrial ecosystem. However, the ideal assumptions for EC measurement hardly meet the real situation, and it has been well documented that the complex terrain and tall forest canopy could significantly cause complicate situations to underestimate flux measurement. In addition, slope-induced drainage flow and horizontal/vertical mean transport have been suggested to misestimate nocturnal fluxes of the carbon dioxide and energy fluxes through deep forest canopy in hilly terrain due to the local complex wind field.
In this study, the data collected from Chi-Lan Mountain flux site, a typical subtropical cloud forest located in north-eastern Taiwan, is used to characterize the flow pattern and its influences on the flux measurement. At this site, a long-term flux tower (height is 24 m) is operating under continuous basis. In this research, two 2-m-high towers were established since September of 2009 trying to characterize flux patterns below canopy and provide sufficient information to adjust the fluxes measurement over a complex terrain. The result showed that long term mean vertical wind speed obtained from planar-fit (PF) method may be very sensitive to the PF coefficients. The PF coefficients calculated from wind speed data from the shorter time period may not be applicable to estimate annual fluxes. The daily pattern of sensible heat flux is significantly different between the above- and below-canopy due to the influences of canopy structure. The horizontal momentum advection within the subcanopy directly related to the vertical mean wind speed. During the nighttime when the atmosphere is relatively stable with negative vertical mean wind speed, the downslope horizontal momentum advection becomes obvious. This strongly implies that the nighttime drainage flow within the subcanopy plays an important role to affect flux estimation in this site.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:28:02Z (GMT). No. of bitstreams: 1
ntu-99-R96228013-1.pdf: 3195799 bytes, checksum: c9e54d5090ee0481a72f91127b7fc688 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
中文摘要 iii
英文摘要 iv
第一章 緒論 1
1.1 通量觀測研究的發展概況 3
1.2 研究動機 4
1.3 研究目的 5
第二章 文獻回顧 7
2.1 地表與大氣界面的通量傳輸 7
2.2 渦流相關法 8
2.3 複雜條件下的通量量測 14
2.3.1 暫存效應 14
2.3.2 平流效應 15
2.3.3 森林冠層結構與泄流 18
第三章 研究方法 21
3.1 試驗地描述 21
3.2 研究設計 25
3.3 儀器設置 26
3.4 數據處理流程 29
3.4.1 資料品質控制 31
3.4.2 穩定性測試 31
3.4.3 座標軸旋轉 32
3.4.4 WPL校正 37
3.4.5 暫存項及平流項之計算 37
第四章 結果與討論 39
4.1 森林次冠層風場分布特徵 40
4.1.1 風場座標平面 40
4.1.2 冠層上下方風向比較 43
4.1.3 風速特性 48
4.2 森林次冠層渦流通量 54
4.2.1 動量通量 54
4.2.2 能量通量 60
4.2.3 二氧化碳通量 72
4.3 森林次冠層通量傳輸的支配力 84
4.3.1 溫度與二氧化碳垂直剖面 84
4.3.2 平流效應 90
第五章 結論與建議 97
5.1 結論 97
5.1.1 通量特徵 97
5.1.2 泄流現象 97
5.1.3 平均垂直風速的估計 98
5.2 後續研究建議 99
引用文獻 101
附錄 107
dc.language.isozh-TW
dc.title山坡地區森林次冠層通量特徵之研究zh_TW
dc.titleInvestigating the Flux Patterns within Forest Subcanopy over a Hilly Terrainen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee夏禹九(Yue-Joe Hsia),謝正義(Cheng-I Hsieh),黃倬英(Cho-ying Huang)
dc.subject.keyword平流效應,平面擬合法,冠層結構,泄流,渦流相關法,紊流通量,zh_TW
dc.subject.keywordadvection,planar-fit method,canopy structure,drainage flow,eddy-covariance,turbulent flux,en
dc.relation.page129
dc.rights.note有償授權
dc.date.accepted2010-07-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
3.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved