請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46736
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏慶琳(Ching-Ling Wei) | |
dc.contributor.author | Mei-Chun Yi | en |
dc.contributor.author | 易美君 | zh_TW |
dc.date.accessioned | 2021-06-15T05:26:26Z | - |
dc.date.available | 2011-08-12 | |
dc.date.copyright | 2010-08-12 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-15 | |
dc.identifier.citation | Alibo, D.S., Nozaki, Y., 2000. Dissolved rare earth elements in the South China Sea: Geochemical characterization of the water masses. Journal of Geophysical Research-Oceans 105 (C12), 28771-28783.
Bacon, M.P., Belastock, R.A., Tecotzky, M., Turekian, K.K., Spencer, D.W., 1988. 210Pb and 210Po in ocean water profiles of the continental-shelf and slope south of New-England. Continental Shelf Research 8 (5-7), 841-853. Bacon, M.P., Brewer, P.G., Spencer, D.W., Murray, J.W., Goddard, J., 1980. 210Pb, 210Po, manganese and iron in the Cariaco Trench. Deep-Sea Research Part I-Oceanographic Research Papers 27 (2), 119-135. Bacon, M.P., Spencer, D.W., Brewer, P.G., 1976. 210Pb/226Ra and 210Po/210Pb disequilibria in seawater and suspended particulate matter. Earth and Planetary Science Letters 32 (2), 277-296. Burton, W.M., Stewart, N.G., 1960. Use of long-lived natural radioactivity as an atmospheric tracer. Nature 186 (4725), 584-589. Cai, P.H., Chen, W.F., Dai, M.H., Wan, Z.W., Wang, D.X., Li, Q., Tang, T.T., Lv, D.W., 2008. A high-resolution study of particle export in the southern South China Sea based on 234Th : 238U disequilibrium. Journal of Geophysical Research-Oceans 113 (C4), C04019 1-5. Cai, P.H., Dai, M.H., Chen, W.F., Tang, T.T., Zhou, K.B., 2006. On the importance of the decay of 234Th in determining size-fractionated C/234Th ratio on marine particles. Geophysical Research Letters 33 (23), L23602 1-5. Carvalho, F.P., Fowler, S.W., 1994. A double-tracer technique to determine the relative importance of water and food as sources of 210Po to marine prawns and fish. Marine Ecology-Progress Series 103 (3), 251-264. Chang, Y.T., Hsu, W.L., Tai, J.H., Tang, T.Y., Chang, M.H., Chao, S.Y., 2010. Cold deep water in the South China Sea. Journal of Oceanography 66 (2), 183-190. Chao, S.Y., Shaw, P.T., Wu, S.Y., 1996. Deep water ventilation in the South China Sea. Deep-Sea Research Part I-Oceanographic Research Papers 43 (4), 445-466. Chen, C.T.A., Wang, S.L., Wang, B.J., Pai, S.C., 2001. Nutrient budgets for the South China Sea basin. Marine Chemistry 75 (4), 281-300. Chen, J.N., Chung, Y.C., 1997. 226Ra, 210Pb and 210Po distributions at the eea off southern Taiwan: Radioactive disequilibria and temporal variations. Terrestrial Atmospheric and Oceanic Sciences 8 (3), 255-270. Chen, W.F., Cai, P.H., Dai, M.H., Wei, J.F., 2008. 234Th/238U disequilibrium and particulate organic carbon export in the northern South China Sea. Journal of Oceanography 64 (3), 417-428. Chen, Y.L.L., Chen, H.Y., Chung, C.W., 2007. Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography 54 (14-15), 1617-1633. Chung, Y., Wu, T., 2005. Large 210Po deficiency in the northern South China Sea. Continental Shelf Research 25 (10), 1209-1224. Cochran, J.K., Bacon, M.P., Krishnaswami, S., Turekian, K.K., 1983. 210Po and 210Pb distributions in the central and eastern Indian Ocean. Earth and Planetary Science Letters 65 (2), 433-452. Craig, H., Krishnas.S, Somayaju.Bl, 1973. 210Pb/226Ra radioactive disequilibrium in deep sea. Earth and Planetary Science Letters 17 (2), 295-305. Feichter, J., Brost, R.A., Heimann, M., 1991. Three dimensional modeling of the concentration and deposition of 210Pb aerosols. Journal of Geophysical Research-Oceans 96 (D12), 22447-22460. Gong, G.C., Liu, K.K., Liu, C.T., Pai, S.C., 1992. The chemical hydrography of the South China Sea west of Luzon and a comparison with the west Philippine Sea. Terrestrial Atmospheric and Oceanic Sciences 3 (4), 587-602. Heyraud, M., Cherry, R.D., 1979. 210Po and 210Pb in marine food-chains. Marine Biology 52 (3), 227-236. Hong, G.H., Kim, Y.I., Baskaran, M., Kim, S.H., Chung, C.S., 2008. Distribution of 210Po and export of organic carbon from the euphotic zone in the southwestern East Sea (Sea of Japan). Journal of Oceanography 64 (2), 277-292. Kim, G., 2001. Large deficiency of polonium in the oligotrophic ocean's interior. Earth and Planetary Science Letters 192 (1), 15-21. Krishnaswami, S., Sarin, M.M., Somayajulu, B.L.K., 1981. Chemical and radiochemical investigations of surface and deep particles of the Indian Ocean. Earth and Planetary Science Letters 54 (1), 81-96. Nozaki, Y., Dobashi, F., Kato, Y., Yamamoto, Y., 1998. Distribution of Ra isotopes and the 210Pb and 210Po balance in surface seawaters of the mid Northern Hemisphere. Deep-Sea Research Part I-Oceanographic Research Papers 45 (8), 1263-1284. Nozaki, Y., Ikuta, N., Yashima, M., 1990. Unusually large 210Po deficiencies relative to 210Pb in the Kuroshio Current of the East China and Philippine Seas. Journal of Geophysical Research-Oceans 95 (C4), 5321-5329. Nozaki, Y., Thomson, J., Turekian, K.K., 1976. Distribution of 210Pb and 210Po in surface waters of Pacific Ocean. Earth and Planetary Science Letters 32 (2), 304-312. Nozaki, Y., Tsubota, H., Kasemsupaya, V., Yashima, M., Ikuta, N., 1991. Residence times of surface-water and particle-reactive 210Pb and 210Po in the East China and Yellow Seas. Geochimica Et Cosmochimica Acta 55 (5), 1265-1272. Nozaki, Y., Tsunogai, S., 1976. 226Ra, 210Pb and 210Po disequilibria in western north Pacific. Earth and Planetary Science Letters 32 (2), 313-321. Nozaki, Y., Tsunogai, S., Nishimura, M., 1973. Lead-210 in the Japan Sea. Journal of Oceanography 29 (6), 251-256. Nozaki, Y., Turekian, K.K., Vondamm, K., 1980. 210Pb in geosecs water profiles from the north Pacific. Earth and Planetary Science Letters 49 (2), 393-400. Nozaki, Y., Yamamoto, Y., 2001. Radium 228 based nitrate fluxes in the eastern Indian Ocean and the South China Sea and a silicon-induced 'alkalinity pump' hypothesis. Global Biogeochemical Cycles 15 (3), 555-567. Nozaki, Y., Zhang, J., Takeda, A., 1997. 2I0Pb and 210Po in the equatorial Pacific and the Bering Sea: The effects of biological productivity and boundary scavenging. Deep-Sea Research Part Ii-Topical Studies in Oceanography 44 (9-10), 2203-2220. Obata, H., Nozaki, Y., Alibo, D.S., Yamamoto, Y., 2004. Dissolved Al, In, and Ce in the eastern Indian Ocean and the southeast Asian seas in comparison with the radionuclides 210Pb and 210Po. Geochimica Et Cosmochimica Acta 68 (5), 1035-1048. Peck, G.A., Smith, J.D., 2000. Distribution of dissolved and particulate 226Ra, 210Pb and 210Po in the Bismarck Sea and western equatorial Pacific Ocean. Marine and Freshwater Research 51 (7), 647-658. Poet, S.E., Martell, E.A., Moore, H.E., 1972. Lead-210, bismuth-210, and polonium-210 in atmosphere - Accurate ratio measurement and application to aerosol residence time determination. Journal of Geophysical Research-Oceans 77 (33), 6515-6527. Sarin, M.M., Kim, G., Church, T.M., 1999. 210Po and 210Pb in the south-equatorial Atlantic: Distribution and disequilibrium in the upper 500 m. Deep-Sea Research Part Ii-Topical Studies in Oceanography 46 (5), 907-917. Sarin, M.M., Krishnaswami, S., Ramesh, R., Somayajulu, B.L.K., 1994a. 238U decay series nuclides in the northeastern Arabian Sea - Scavenging rates and cycling processes. Continental Shelf Research 14 (2-3), 251-265. Sarin, M.M., Rengarajan, R., Somayajulu, B.L.K., 1994b. Natural radionuclides in the Arabian Sea and Bay of Bengal - Distribution and evaluation of particle scavenging processes. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences 103 (2), 211-235. Shannon, L.V., Cherry, R.D., Orren, M.J., 1970. 210Po and 210Pb in marine environment. Geochimica Et Cosmochimica Acta 34 (6), 701-711. Stewart, G.M., Moran, S.B., Lomas, M.W., 2010. Seasonal POC fluxes at BATS estimated from 210Po deficits. Deep-Sea Research Part I-Oceanographic Research Papers 57 (1), 113-124. Towler, P.H., Smith, J.D., 1997. Distribution of 226Ra and 210Pb in the mixed layer of the western equatorial Pacific Ocean. Marine and Freshwater Research 48 (5), 371-375. Tseng, C.M., Wong, G.T.F., Lin, I.I., Wu, C.R., Liu, K.K., 2005. A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea. Geophysical Research Letters 32 (8), 1-4. Wei, C.L., Murray, J.W., 1994. The behavior of scavenged isotopes in marine anoxic environments - 210Pb and 210Po in the water column of the Black Sea. Geochimica Et Cosmochimica Acta 58 (7), 1795-1811. Wong, G.T.F., Ku, T.L., Mulholland, M., Tseng, C.M., Wang, D.P., 2007. The SouthEast Asian time-series study (SEATS) and the biogeochemistry of the South China Sea - An overview. Deep-Sea Research Part Ii-Topical Studies in Oceanography 54 (14-15), 1434-1447. Yang, W.F., Huang, Y.P., Chen, M., Zhang, L., Li, H.B., Liu, G.S., Qiu, Y.S., 2006. Disequilibria between 210Po and 210Pb in surface waters of the southern South China Sea and their implications. Science in China Series D-Earth Sciences 49 (1), 103-112. 林筱雨, 2009. 南海北部輸出生產力季節變化:釷-234/鈾-238不平衡估算及沈降顆粒收集器量測. 國立台灣大學海洋研究所碩士論文, 55頁. 楊明德, 2001. 台灣台北地區大氣210Pb沈降通量. 國立台灣大學海洋研究所碩士論文, 61頁. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46736 | - |
dc.description.abstract | 本研究利用SEATS (South East Asian Time-series Study) 航次從2007年一月至2008年六月期間,於時序測站 (18°N, 116°E) 進行海水及沉降顆粒採樣工作,獲得四個高密度垂直剖面生地化數據。本研究除分析溶解相與顆粒相的210Pb及210Po於水體中的垂直分佈外,首次以漂浮式沉降顆粒收集器及錨定式時間序列沉降顆粒收集器 (KK6, KK7) 收集沈降顆粒,直接量測210Pb及210Po顆粒通量。
相對於226Ra,210Pb的放射活度呈現明顯不足現象,研究結果顯示,210Pb/226Ra比值於南海的深層介於0.3至0.5之間,與阿拉伯海之比值相近。210Po相對於210Pb不足的程度則較小,且不同航次間有明顯變化。本研究210Po與210Pb活度與Obata et al. (2004) 於SEATS西南方約300 km測站之數據比較大致相符,但與Chung and Wu (2005) 之數據相比則有系統性差量。 在開放性大洋中,210Pb的滯留時間為50年以上;東海及日本海等邊緣海地區,因為靠近陸地顆粒體較多,使得清除速率較快,210Pb之滯留時間則可縮短至15年左右,本研究經模式推估210Pb於深層海水之滯留時間則介於7與29年之間 ,與文獻相符。210Po於南海的清除速率與同緯度的阿拉伯海相似,滯留時間平均約為2年左右。 由水體中210Pb/226Ra不平衡程度估算深海3500 m處,210Pb之移除通量介於39與46 dpm/m2/day之間,由210Po/210Pb不平衡程度估算210Po通量則介於430與1033 dpm/m2/day之間。錨定式時間序列沉降顆粒收集器於KK6及KK7兩次施放所採集的數個樣品中,於3500 m測得的210Pb、210Po之通量分別為31.5~51.1 dpm/m2/day及25.8~52.2 dpm/m2/day。將模式計算與實測結果相比對,兩種方式推估的210Pb移除通量大致相符,但210Po通量模式計算大於直接量測結果,應與南海海盆中210Po顆粒通量的季節變化大有關。 本研究使用漂浮式沉降顆粒收集器於30、100、160 m所量得的210Pb通量依序為9~36、8~34、14~37 dpm/m2/day,210Po之通量則依序為為31~127、11~108及12~42 dpm/m2/day。由水體中210Pb/226Ra不平衡程度估算於160 m之210Pb移除通量,為11~27 dpm/m2/day;由210Po/210Pb不平衡程度估算210Po於160 m通量則為5.8~31.2 dpm/m2/day。 | zh_TW |
dc.description.abstract | Four vertical profiles of dissolved and particulate of 210Pb and 210Po were measured at the SouthEast Asian Time-series Study (SEATS) station in the northern South China Sea (18°N and 116°E) from October 2007 to June 2008. In this study, floating traps and moored traps were also deployed to directly measure the fluxes of 210Pb and 210Po at the site.
All the profiles show a large 210Pb deficiency relative to 226Ra in the deep water of the South China Sea. According to this study, the 210Pb/226Ra ratio range between 0.3 and 0.5, similar to the ratio to the findings in the Arabian Sea. Compared with the 210Pb profiles, 210Po profiles display a small deficiency with respect to 210Pb. Significant variation of 210Po profiles were found among the four cruises. The data of this study is more consistent with Obata et al. (2004) than with Chung and Wu (2005). The residence time of 210Pb is ~50 years in the open ocean. Since the removal is more intense in the marginal seas, i.e., East China Sea and Japan Sea, in which more particulate matters was found, the residence time of 210Pb in these regions is shorter than 15 years. By using the irreversible scavenging model, we calculated the residence time of 210Pb in the deep water of the South China Sea, which range between 7 and 29 years. Shorter residence of 2 years for 210Po in the deep layer of the South China Sea was found. The scavenging rate of 210Po in the South China Sea is similar to the Arabian Sea. Based on the deficiencies of 210Pb and 210Po in the water column, the removal fluxes of 210Pb and 210Po at 3500 m are 39~46 dpm/m2/day and 430~1033 dpm/m2/day, respectively. Direct measurements of limited samples collected by the moored traps (KK6 and KK7) at same depth show that the 210Pb and 210Po fluxes are between 31.5~51.1 dpm/m2/day and between 25.8~52.2 dpm/m2/day, respectively. The 210Pb removal flux estimated from the scavenging model is comparable with the directly measured flux, whereas 210Po removal flux is much higher than that directly measured by the moored sediment traps. Large temporal variability of particle flux at the site is proposed to be the cause of large discrepancy between the modeled 210Po flux and the measured flux. We also deployed the floating traps to collect sinking particle at 30 m, 100 m and 160 m during the four cruises. The 210Pb fluxes range between 9 and 36, 8 and 34, 14 and 37 dpm/m2/day, respectively. The 210Po fluxes range from 31 to 127, from 11 to 108, from 12 to 42 dpm/m2/day at 30 m, 100 m and 160 m, respectively. The removal fluxes estimated from the 210Pb/226Ra and 210Po/210Pb disequilibrium at 160 m, are 11~27 dpm/m2/day and 5.8~31.2 dpm/m2/day, for 210Pb and 210Po, respectively. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:26:26Z (GMT). No. of bitstreams: 1 ntu-99-R97241402-1.pdf: 2317364 bytes, checksum: e6970a8ded590ec6d44852194915c967 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract V 目次 VIII 圖次 X 表次 XII 第一章 緒論 1 1-1 210Pb、210Po於海洋清除作用之應用 1 1-2 過去南海清除作用的研究 2 1-3 南海地理、水文與生物環境 3 1-4 研究目的 4 第二章 分析方法 7 2-1 航次資訊 7 2-2 採樣 7 2-2.1 船上水樣處理 7 2-2.2 沉降顆粒收集器 8 2-3 實驗分析方法 8 2-3.1 釙-210 8 2-3.1.1 溶解相分析 8 2-3.1.2 顆粒相分析 9 2-3.2 鉛-210分析 9 2-4 樣品活度推算 9 2-4.1 釙-210活度計算 9 2-4.2 鉛-210活度計算 10 第三章 結果 14 3-1 水文及生物參數 14 3-2 210Pb活度垂直分佈 15 3-3 210Po活度垂直分佈 16 3-4 沉降顆粒收集器量測結果 18 第四章 討論 30 4-1 南海210Pb及210Po文獻數據比較 30 4-2 210Pb/226Ra不平衡的垂直與季節變化 31 4-3 210Po/210Pb不平衡的垂直與季節變化 32 4-4 210Pb與210Po對顆粒體之親和性比較 34 4-4.1 重量活度與顆粒態比例 34 4-4.2 分佈係數(Kd) 34 4-5 懸浮與沉降顆粒之210Pb、210Po比較 35 4-6 210Pb、210Po之清除現象與模式計算 36 4-6.1 210Pb之一維不可逆清除模式 36 4-6.2 210Pb之清除速率及滯留時間 37 4-6.3 210Po之清除模式 38 4-6.4 210Po之清除速率及滯留時間 39 4-6.5 模式通量與沉降顆粒收集器量測結果比較 39 4-7 210Pb大氣通量的影響 41 第五章 結論 54 參考文獻 55 | |
dc.language.iso | zh-TW | |
dc.title | 南海水體中鉛-210及釙-210的季節分佈與通量研究 | zh_TW |
dc.title | 210Pb and 210Po in the South China Sea:
Seasonal Distributions and Fluxes | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 洪慶章(Chin-Chang Hung),溫良碩(Liang-Saw Wen) | |
dc.subject.keyword | 南海時間序列研究,210Po/210Pb不平衡,210Pb/226Ra不平衡,210Pb通量,210Po通量, | zh_TW |
dc.subject.keyword | SEATS,210Po/210Pb disequilibrium,210Pb/226Ra disequilibrium,210Pb flux,210Po flux, | en |
dc.relation.page | 66 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 2.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。