請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46704
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 范守仁(Shou-Zen Fan) | |
dc.contributor.author | Jheng-Yan Lan | en |
dc.contributor.author | 藍正妍 | zh_TW |
dc.date.accessioned | 2021-06-15T05:24:24Z | - |
dc.date.available | 2011-09-09 | |
dc.date.copyright | 2010-09-09 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-19 | |
dc.identifier.citation | Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996;93(5):1043-1065.
Abram SE, Mampilly GA, and Milosavljevic D. 1997. Assessment of the potency and intrinsic activity of systemic versus intrathecal opioids in rats. Anesthesiology 87(1):127-134; discussion 127A-129A. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, and Cohen RJ. 1981. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213(4504):220-222. Appel ML, Berger RD, Saul JP, Smith JM, and Cohen RJ. 1989. Beat to beat variability in cardiovascular variables: noise or music? J Am Coll Cardiol 14(5):1139-1148. Axelrod S, Lishner M, Oz O, Bernheim J, and Ravid M. 1987. Spectral analysis of fluctuations in heart rate: an objective evaluation of autonomic nervous control in chronic renal failure. Nephron 45(3):202-206. Beckers F, Verheyden B, Ramaekers D, Swynghedauw B, and Aubert AE. 2006. Effects of autonomic blockade on non-linear cardiovascular variability indices in rats. Clin Exp Pharmacol Physiol 33(5-6):431-439. Boban M, Stowe DF, Buljubasic N, Kampine JP, and Bosnjak ZJ. 1992. Direct comparative effects of isoflurane and desflurane in isolated guinea pig hearts. Anesthesiology 76(5):775-780. Bosnjak ZJ, and Kampine JP. 1983. Effects of halothane, enflurane, and isoflurane on the SA node. Anesthesiology 58(4):314-321. Braun C, Kowallik P, Freking A, Hadeler D, Kniffki KD, and Meesmann M. 1998. Demonstration of nonlinear components in heart rate variability of healthy persons. Am J Physiol 275(5 Pt 2):H1577-1584. Bruhn J, Bouillon TW, Radulescu L, Hoeft A, Bertaccini E, and Shafer SL. 2003. Correlation of approximate entropy, bispectral index, and spectral edge frequency 95 (SEF95) with clinical signs of 'anesthetic depth' during coadministration of propofol and remifentanil. Anesthesiology 98(3):621-627. Bruhn J, Bouillon TW, and Shafer SL. 2001. Onset of propofol-induced burst suppression may be correctly detected as deepening of anaesthesia by approximate entropy but not by bispectral index. Br J Anaesth 87(3):505-507. Bruhn J, Ropcke H, and Hoeft A. 2000. Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia. Anesthesiology 92(3):715-726. Burgos LG, Ebert TJ, Asiddao C, Turner LA, Pattison CZ, Wang-Cheng R, and Kampine JP. 1989. Increased intraoperative cardiovascular morbidity in diabetics with autonomic neuropathy. Anesthesiology 70(4):591-597. Cahill CM, White TD, and Sawynok J. 1995. Spinal opioid receptors and adenosine release: neurochemical and behavioral characterization of opioid subtypes. J Pharmacol Exp Ther 275(1):84-93. Cernelc M, Suki B, Reinmann B, Hall GL, and Frey U. 2002. Correlation properties of tidal volume and end-tidal O2 and CO2 concentrations in healthy infants. J Appl Physiol 92(5):1817-1827. Chamberlain DP, and Chamberlain BD. 1986. Changes in the skin temperature of the trunk and their relationship to sympathetic blockade during spinal anesthesia. Anesthesiology 65(2):139-143. Chamchad D, Arkoosh VA, Horrow JC, Buxbaum JL, Izrailtyan I, Nakhamchik L, Hoyer D, and Kresh JY. 2004. Using heart rate variability to stratify risk of obstetric patients undergoing spinal anesthesia. Anesth Analg 99(6):1818-1821, table of contents. Chilvers CR, Vaghadia H, Mitchell GW, and Merrick PM. 1997. Small-dose hypobaric lidocaine-fentanyl spinal anesthesia for short duration outpatient laparoscopy. II. Optimal fentanyl dose. Anesth Analg 84(1):65-70. Claeys MA, Gepts E, and Camu F. 1988. Haemodynamic changes during anaesthesia induced and maintained with propofol. Br J Anaesth 60(1):3-9. Cook PR, Malmqvist LA, Bengtsson M, Tryggvason B, and Lofstrom JB. 1990. Vagal and sympathetic activity during spinal analgesia. Acta Anaesthesiol Scand 34(4):271-275. Costa M, Goldberger AL, and Peng CK. 2002. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89(6):068102. Courtney KR. 1980. Structure-activity relations for frequency-dependent sodium channel block in nerve by local anesthetics. J Pharmacol Exp Ther 213(1):114-119. Cygankiewicz I, Wranicz JK, Bolinska H, Zaslonka J, Jaszewski R, and Zareba W. 2004. Influence of coronary artery bypass grafting on heart rate turbulence parameters. Am J Cardiol 94(2):186-189. Deutschman CS, Harris AP, and Fleisher LA. 1994. Changes in heart rate variability under propofol anesthesia: a possible explanation for propofol-induced bradycardia. Anesth Analg 79(2):373-377. Dickenson AH. 1995. Spinal cord pharmacology of pain. Br J Anaesth 75(2):193-200. Ebert TJ, and Muzi M. 1993. Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers. A comparison with isoflurane. Anesthesiology 79(3):444-453. Ebert TJ, and Muzi M. 1994. Propofol and autonomic reflex function in humans. Anesth Analg 78(2):369-375. Ebert TJ, Muzi M, Berens R, Goff D, and Kampine JP. 1992. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology 76(5):725-733. Ebert TJ, Muzi M, and Lopatka CW. 1995. Neurocirculatory responses to sevoflurane in humans. A comparison to desflurane. Anesthesiology 83(1):88-95. Ebert TJ, Perez F, Uhrich TD, and Deshur MA. 1998. Desflurane-mediated sympathetic activation occurs in humans despite preventing hypotension and baroreceptor unloading. Anesthesiology 88(5):1227-1232. Eckberg DL, Mohanty SK, and Raczkowska M. 1984. Trigeminal-baroreceptor reflex interactions modulate human cardiac vagal efferent activity. J Physiol 347:75-83. Eneroth E, and Storck N. 1998. Preeclampsia and maternal heart rate variability. Gynecol Obstet Invest 45(3):170-173. Eneroth E, Westgren M, Ericsson M, Lindblad LE, and Storck N. 1999. 24-hour ECG frequency-domain measures in preeclamptic and healthy pregnant women during and after pregnancy. Hypertens Pregnancy 18(1):1-9. Ewing DJ, Martyn CN, Young RJ, and Clarke BF. 1985. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care 8(5):491-498. Fleisher LA, Frank SM, Shir Y, Estafanous M, Kelly S, and Raja SN. 1994. Cardiac sympathovagal balance and peripheral sympathetic vasoconstriction: epidural versus general anesthesia. Anesth Analg 79(1):165-171. Fleisher LA, Pincus SM, and Rosenbaum SH. 1993. Approximate entropy of heart rate as a correlate of postoperative ventricular dysfunction. Anesthesiology 78(4):683-692. Fujiwara Y, Kurokawa S, Shibata Y, Asakura Y, Harado M, and Komatsu T. 2009. Sympathovagal effects of spinal anaesthesia with intrathecal or intravenous fentanyl assessed by heart rate variability. Acta Anaesthesiol Scand 53(4):476-482. Furlan R, Porta A, Costa F, Tank J, Baker L, Schiavi R, Robertson D, Malliani A, and Mosqueda-Garcia R. 2000. Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus. Circulation 101(8):886-892. Galletly DC, Buckley DH, Robinson BJ, and Corfiatis T. 1994a. Heart rate variability during propofol anaesthesia. Br J Anaesth 72(2):219-220. Galletly DC, Westenberg AM, Robinson BJ, and Corfiatis T. 1994b. Effect of halothane, isoflurane and fentanyl on spectral components of heart rate variability. Br J Anaesth 72(2):177-180. Gentili M, Huu PC, Enel D, Hollande J, and Bonnet F. 1998. Sedation depends on the level of sensory block induced by spinal anaesthesia. Br J Anaesth 81(6):970-971. Gissen AJ, Gugino LD, Datta S, Miller J, and Covino BG. 1987. Effects of fentanyl and sufentanil on peripheral mammalian nerves. Anesth Analg 66(12):1272-1276. Glass L, and Mackey MC. 1998. Steady states, oscillations, and chaos in physiological systems, From clocks to chaos: the rhythms of life, Princeton University Press.19-35. Goel S, Bhardwaj N, and Grover VK. 2003. Intrathecal fentanyl added to intrathecal bupivacaine for day case surgery: a randomized study. Eur J Anaesthesiol 20(4):294-297. Goldberger AL. 1997. Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med 40(4):543-561. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov P, Peng CK, and Stanley HE. 2002a. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A 99 Suppl 1:2466-2472. Goldberger AL, Peng CK, and Lipsitz LA. 2002b. What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging 23(1):23-26. Goodarzi M, and Narasimhan RR. 2001. The effect of large-dose intrathecal opioids on the autonomic nervous system. Anesth Analg 93(2):456-459, 454th contents page. Gratadour P, Viale JP, Parlow J, Sagnard P, Counioux H, Bagou G, Annat G, Hughson R, and Quintin L. 1997. Sympathovagal effects of spinal anesthesia assessed by the spontaneous cardiac baroreflex. Anesthesiology 87(6):1359-1367. Gueugniaud PY, Hanouz JL, Vivien B, Lecarpentier Y, Coriat P, and Riou B. 1997. Effects of desflurane in rat myocardium: comparison with isoflurane and halothane. Anesthesiology 87(3):599-609. Guzzetti S, Mezzetti S, Magatelli R, Porta A, De Angelis G, Rovelli G, and Malliani A. 2000. Linear and non-linear 24 h heart rate variability in chronic heart failure. Auton Neurosci 86(1-2):114-119. Hampl KF, Heinzmann-Wiedmer S, Luginbuehl I, Harms C, Seeberger M, Schneider MC, and Drasner K. 1998. Transient neurologic symptoms after spinal anesthesia: a lower incidence with prilocaine and bupivacaine than with lidocaine. Anesthesiology 88(3):629-633. Hampl KF, Schneider MC, and Drasner K. 1999. Toxicity of spinal local anaesthetics. Curr Opin Anaesthesiol 12(5):559-564. Hanss R, Bein B, Francksen H, Scherkl W, Bauer M, Doerges V, Steinfath M, Scholz J, and Tonner PH. 2006. Heart rate variability-guided prophylactic treatment of severe hypotension after subarachnoid block for elective cesarean delivery. Anesthesiology 104(4):635-643. Hanss R, Bein B, Ledowski T, Lehmkuhl M, Ohnesorge H, Scherkl W, Steinfath M, Scholz J, and Tonner PH. 2005. Heart rate variability predicts severe hypotension after spinal anesthesia for elective cesarean delivery. Anesthesiology 102(6):1086-1093. Hara M, Kai Y, and Ikemoto Y. 1993. Propofol activates GABAA receptor-chloride ionophore complex in dissociated hippocampal pyramidal neurons of the rat. Anesthesiology 79(4):781-788. Hartman ML, Pincus SM, Johnson ML, Matthews DH, Faunt LM, Vance ML, Thorner MO, and Veldhuis JD. 1994. Enhanced basal and disorderly growth hormone secretion distinguish acromegalic from normal pulsatile growth hormone release. J Clin Invest 94(3):1277-1288. Hautala AJ, Makikallio TH, Seppanen T, Huikuri HV, and Tulppo MP. 2003. Short-term correlation properties of R-R interval dynamics at different exercise intensity levels. Clin Physiol Funct Imaging 23(4):215-223. Ho KK, Moody GB, Peng CK, Mietus JE, Larson MG, Levy D, and Goldberger AL. 1997. Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 96(3):842-848. Honet JE, Arkoosh VA, Norris MC, Huffnagle HJ, Silverman NS, and Leighton BL. 1992. Comparison among intrathecal fentanyl, meperidine, and sufentanil for labor analgesia. Anesth Analg 75(5):734-739. Huang HH, Lee YH, Chan HL, Wang YP, Huang CH, and Fan SZ. 2008. Using a short-term parameter of heart rate variability to distinguish awake from isoflurane anesthetic states. Med Biol Eng Comput 46(10):977-984. Hug CC, Jr., McLeskey CH, Nahrwold ML, Roizen MF, Stanley TH, Thisted RA, Walawander CA, White PF, Apfelbaum JL, Grasela TH and others. 1993. Hemodynamic effects of propofol: data from over 25,000 patients. Anesth Analg 77(4 Suppl):S21-29. Huikuri HV, Makikallio TH, Peng CK, Goldberger AL, Hintze U, and Moller M. 2000. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101(1):47-53. Hwa RC, and Ferree TC. 2002. Scaling properties of fluctuations in the human electroencephalogram. Phys Rev E Stat Nonlin Soft Matter Phys 66(2 Pt 1):021901. Introna R, Yodlowski E, Pruett J, Montano N, Porta A, and Crumrine R. 1995. Sympathovagal effects of spinal anesthesia assessed by heart rate variability analysis. Anesth Analg 80(2):315-321. Ishiguro Y, Goto T, Nakata Y, Terui K, Niimi Y, and Morita S. 2000. Effect of xenon on autonomic cardiovascular control--comparison with isoflurane and nitrous oxide. J Clin Anesth 12(3):196-201. Ivanov PC, Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, and Stanley HE. 1999. Multifractality in human heartbeat dynamics. Nature 399(6735):461-465. Iyengar N, Peng CK, Morin R, Goldberger AL, and Lipsitz LA. 1996. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol 271(4 Pt 2):R1078-1084. Jokinen V, Syvanne M, Makikallio TH, Airaksinen KE, and Huikuri HV. 2001. Temporal age-related changes in spectral, fractal and complexity characteristics of heart rate variability. Clin Physiol 21(3):273-281. Jouven X, Empana JP, Schwartz PJ, Desnos M, Courbon D, and Ducimetiere P. 2005. Heart-rate profile during exercise as a predictor of sudden death. N Engl J Med 352(19):1951-1958. Kamath MV, and Fallen EL. 1993. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Rev Biomed Eng 21(3):245-311. Kanaya N, Hirata N, Kurosawa S, Nakayama M, and Namiki A. 2003. Differential effects of propofol and sevoflurane on heart rate variability. Anesthesiology 98(1):34-40. Kanaya N, Murray PA, and Damron DS. 1998. Propofol and ketamine only inhibit intracellular Ca2+ transients and contraction in rat ventricular myocytes at supraclinical concentrations. Anesthesiology 88(3):781-791. Kanters JK, Hojgaard MV, Agner E, and Holstein-Rathlou NH. 1996. Short- and long-term variations in non-linear dynamics of heart rate variability. Cardiovasc Res 31(3):400-409. Kararmaz A, Kaya S, Turhanoglu S, and Ozyilmaz MA. 2003. Low-dose bupivacaine-fentanyl spinal anaesthesia for transurethral prostatectomy. Anaesthesia 58(6):526-530. Kato M, Komatsu T, Kimura T, Sugiyama F, Nakashima K, and Shimada Y. 1992. Spectral analysis of heart rate variability during isoflurane anesthesia. Anesthesiology 77(4):669-674. Kawamoto M, Tanaka N, and Takasaki M. 1993. Power spectral analysis of heart rate variability after spinal anaesthesia. Br J Anaesth 71(4):523-527. Kersten J, Pagel PS, Tessmer JP, Roerig DL, Schmeling WT, and Warltier DC. 1993. Dexmedetomidine alters the hemodynamic effects of desflurane and isoflurane in chronically instrumented dogs. Anesthesiology 79(5):1022-1032. Khurana RK, Nelson E, Azzarelli B, and Garcia JH. 1980. Shy-Drager syndrome: diagnosis and treatment of cholinergic dysfunction. Neurology 30(8):805-809. Kim SY, Cho JE, Hong JY, Koo BN, Kim JM, and Kil HK. 2009. Comparison of intrathecal fentanyl and sufentanil in low-dose dilute bupivacaine spinal anaesthesia for transurethral prostatectomy. Br J Anaesth 103(5):750-754. Kleiger RE, Miller JP, Bigger JT, Jr., and Moss AJ. 1987. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59(4):256-262. Kleiger RE, Stein PK, Bosner MS, and Rottman JN. 1992. Time domain measurements of heart rate variability. Cardiol Clin 10(3):487-498. Kuo CD, Chen GY, Lai ST, Wang YY, Shih CC, and Wang JH. 1999. Sequential changes in heart rate variability after coronary artery bypass grafting. Am J Cardiol 83(5):776-779, A779. Laitio TT, Huikuri HV, Kentala ES, Makikallio TH, Jalonen JR, Helenius H, Sariola-Heinonen K, Yli-Mayry S, and Scheinin H. 2000. Correlation properties and complexity of perioperative RR-interval dynamics in coronary artery bypass surgery patients. Anesthesiology 93(1):69-80. Laitio TT, Huikuri HV, Koskenvuo J, Jalonen J, Makikallio TH, Helenius H, Kentala ES, Hartiala J, and Scheinin H. 2006. Long-term alterations of heart rate dynamics after coronary artery bypass graft surgery. Anesth Analg 102(4):1026-1031. Laitio TT, Makikallio TH, Huikuri HV, Kentala ES, Uotila P, Jalonen JR, Helenius H, Hartiala J, Yli-Mayry S, and Scheinin H. 2002. Relation of heart rate dynamics to the occurrence of myocardial ischemia after coronary artery bypass grafting. Am J Cardiol 89(10):1176-1181. Latson TW, Ashmore TH, Reinhart DJ, Klein KW, and Giesecke AH. 1994. Autonomic reflex dysfunction in patients presenting for elective surgery is associated with hypotension after anesthesia induction. Anesthesiology 80(2):326-337. Lebenbom-Mansour MH, Pandit SK, Kothary SP, Randel GI, and Levy L. 1993. Desflurane versus propofol anesthesia: a comparative analysis in outpatients. Anesth Analg 76(5):936-941. Lee ST, and Hon EH. 1965. The Fetal Electrocardiogram. Iv. Unusual Variations in the Qrs Complex during Labor. Am J Obstet Gynecol 92:1140-1148. Lewinsky RM, and Riskin-Mashiah S. 1998. Autonomic imbalance in preeclampsia: evidence for increased sympathetic tone in response to the supine-pressor test. Obstet Gynecol 91(6):935-939. Lipsitz LA, and Goldberger AL. 1992. Loss of 'complexity' and aging. Potential applications of fractals and chaos theory to senescence. JAMA 267(13):1806-1809. Lishner M, Akselrod S, Avi VM, Oz O, Divon M, and Ravid M. 1987. Spectral analysis of heart rate fluctuations. A non-invasive, sensitive method for the early diagnosis of autonomic neuropathy in diabetes mellitus. J Auton Nerv Syst 19(2):119-125. Luczak H, and Laurig W. 1973. An analysis of heart rate variability. Ergonomics 16(1):85-97. Makikallio TH, Huikuri HV, Makikallio A, Sourander LB, Mitrani RD, Castellanos A, and Myerburg RJ. 2001. Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. J Am Coll Cardiol 37(5):1395-1402. Makikallio TH, Ristimae T, Airaksinen KE, Peng CK, Goldberger AL, and Huikuri HV. 1998. Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures. Am J Cardiol 81(1):27-31. Makikallio TH, Seppanen T, Airaksinen KE, Koistinen J, Tulppo MP, Peng CK, Goldberger AL, and Huikuri HV. 1997. Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction. Am J Cardiol 80(6):779-783. Malliani A, Pagani M, Lombardi F, and Cerutti S. 1991. Cardiovascular neural regulation explored in the frequency domain. Circulation 84(2):482-492. Marsch SC, Skarvan K, Schaefer HG, Naegeli B, Paganoni R, Castelli I, and Scheidegger D. 1994. Prolonged decrease in heart rate variability after elective hip arthroplasty. Br J Anaesth 72(6):643-649. Meneilly GS, Ryan AS, Veldhuis JD, and Elahi D. 1997. Increased disorderliness of basal insulin release, attenuated insulin secretory burst mass, and reduced ultradian rhythmicity of insulin secretion in older individuals. J Clin Endocrinol Metab 82(12):4088-4093. Monk CR, Coates DP, Prys-Roberts C, Turtle MJ, and Spelina K. 1987. Haemodynamic effects of a prolonged infusion of propofol as a supplement to nitrous oxide anaesthesia. Studies in association with peripheral arterial surgery. Br J Anaesth 59(8):954-960. Montano N, Porta A, and Malliani A. 2001. Evidence for central organization of cardiovascular rhythms. Ann N Y Acad Sci 940:299-306. Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, and Malliani A. 1994. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90(4):1826-1831. Mussalo H, Vanninen E, Ikaheimo R, Laitinen T, Laakso M, Lansimies E, and Hartikainen J. 2001. Heart rate variability and its determinants in patients with severe or mild essential hypertension. Clin Physiol 21(5):594-604. Nair GS, Abrishami A, Lermitte J, and Chung F. 2009. Systematic review of spinal anaesthesia using bupivacaine for ambulatory knee arthroscopy. Br J Anaesth 102(3):307-315. Notarius CF, and Floras JS. 2001. Limitations of the use of spectral analysis of heart rate variability for the estimation of cardiac sympathetic activity in heart failure. Europace 3(1):29-38. Ori Z, Monir G, Weiss J, Sayhouni X, and Singer DH. 1992. Heart rate variability. Frequency domain analysis. Cardiol Clin 10(3):499-537. Pagani M, Montano N, Porta A, Malliani A, Abboud FM, Birkett C, and Somers VK. 1997. Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation 95(6):1441-1448. Pagel PS, Kampine JP, Schmeling WT, and Warltier DC. 1991. Comparison of the systemic and coronary hemodynamic actions of desflurane, isoflurane, halothane, and enflurane in the chronically instrumented dog. Anesthesiology 74(3):539-551. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, and Goldberger AL. 1994. Mosaic organization of DNA nucleotides. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(2):1685-1689. Peng CK, Havlin S, Hausdorff JM, Mietus JE, Stanley HE, and Goldberger AL. 1995a. Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. J Electrocardiol 28 Suppl:59-65. Peng CK, Havlin S, Stanley HE, and Goldberger AL. 1995b. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1):82-87. Peng CK, Mietus JE, Liu Y, Lee C, Hausdorff JM, Stanley HE, Goldberger AL, and Lipsitz LA. 2002. Quantifying fractal dynamics of human respiration: age and gender effects. Ann Biomed Eng 30(5):683-692. Penttila J, Helminen A, Jartti T, Kuusela T, Huikuri HV, Tulppo MP, and Scheinin H. 2003. Effect of cardiac vagal outflow on complexity and fractal correlation properties of heart rate dynamics. Auton Autacoid Pharmacol 23(3):173-179. Penttila J, Kuusela T, and Scheinin H. 2005. Analysis of rapid heart rate variability in the assessment of anticholinergic drug effects in humans. Eur J Clin Pharmacol 61(8):559-565. Penzel T, Kantelhardt JW, Grote L, Peter JH, and Bunde A. 2003. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans Biomed Eng 50(10):1143-1151. Perkiomaki JS, Zareba W, Badilini F, and Moss AJ. 2002. Influence of atropine on fractal and complexity measures of heart rate variability. Ann Noninvasive Electrocardiol 7(4):326-331. Pincus SM. 1991. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A 88(6):2297-2301. Pincus SM, and Goldberger AL. 1994. Physiological time-series analysis: what does regularity quantify? Am J Physiol 266(4 Pt 2):H1643-1656. Pincus SM, and Viscarello RR. 1992. Approximate entropy: a regularity measure for fetal heart rate analysis. Obstet Gynecol 79(2):249-255. Pollock JE, Neal JM, Liu SS, Burkhead D, and Polissar N. 2000. Sedation during spinal anesthesia. Anesthesiology 93(3):728-734. Poulsen SH, Jensen SE, Moller JE, and Egstrup K. 2001. Prognostic value of left ventricular diastolic function and association with heart rate variability after a first acute myocardial infarction. Heart 86(4):376-380. Rentero N, Cividjian A, Trevaks D, Pequignot JM, Quintin L, and McAllen RM. 2002. Activity patterns of cardiac vagal motoneurons in rat nucleus ambiguus. Am J Physiol Regul Integr Comp Physiol 283(6):R1327-1334. Richman JS, and Moorman JR. 2000. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039-2049. Ryan SM, Goldberger AL, Pincus SM, Mietus J, and Lipsitz LA. 1994. Gender- and age-related differences in heart rate dynamics: are women more complex than men? J Am Coll Cardiol 24(7):1700-1707. Saul JP, Rea RF, Eckberg DL, Berger RD, and Cohen RJ. 1990. Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity. Am J Physiol 258(3 Pt 2):H713-721. Sayers BM. 1973. Analysis of heart rate variability. Ergonomics 16(1):17-32. Scheffer GJ, Ten Voorde BJ, Karemaker JM, Ros HH, and de Lange JJ. 1993. Effects of thiopentone, etomidate and propofol on beat-to-beat cardiovascular signals in man. Anaesthesia 48(10):849-855. Schmidt G, Malik M, Barthel P, Schneider R, Ulm K, Rolnitzky L, Camm AJ, Bigger JT, Jr., and Schomig A. 1999. Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet 353(9162):1390-1396. Schmitz O, Porksen N, Nyholm B, Skjaerbaek C, Butler PC, Veldhuis JD, and Pincus SM. 1997. Disorderly and nonstationary insulin secretion in relatives of patients with NIDDM. Am J Physiol 272(2 Pt 1):E218-226. Schwartz PJ. 1998. The autonomic nervous system and sudden death. Eur Heart J 19 Suppl F:F72-80. Schwartz PJ, La Rovere MT, and Vanoli E. 1992. Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation 85(1 Suppl):I77-91. Seagard JL, Hopp FA, Bosnjak ZJ, Osborn JL, and Kampine JP. 1984. Sympathetic efferent nerve activity in conscious and isoflurane-anesthetized dogs. Anesthesiology 61(3):266-270. Smith I, White PF, Nathanson M, and Gouldson R. 1994. Propofol. An update on its clinical use. Anesthesiology 81(4):1005-1043. Stanley HE, Amaral LA, Goldberger AL, Havlin S, Ivanov P, and Peng CK. 1999. Statistical physics and physiology: monofractal and multifractal approaches. Physica A 270(1-2):309-324. Stauss HM. 2003. Heart rate variability. Am J Physiol Regul Integr Comp Physiol 285(5):R927-931. Stein PK. 2002. Assessing heart rate variability from real-world Holter reports. Card Electrophysiol Rev 6(3):239-244. Stein PK, and Kleiger RE. 1999. Insights from the study of heart rate variability. Annu Rev Med 50:249-261. Tanaka S, Tsuchida H, Nakabayashi K, Seki S, and Namiki A. 1996. The effects of sevoflurane, isoflurane, halothane, and enflurane on hemodynamic responses during an inhaled induction of anesthesia via a mask in humans. Anesth Analg 82(4):821-826. Tapanainen JM, Thomsen PE, Kober L, Torp-Pedersen C, Makikallio TH, Still AM, Lindgren KS, and Huikuri HV. 2002. Fractal analysis of heart rate variability and mortality after an acute myocardial infarction. Am J Cardiol 90(4):347-352. Tomoda K, Shingu K, Osawa M, Murakawa M, and Mori K. 1993. Comparison of CNS effects of propofol and thiopentone in cats. Br J Anaesth 71(3):383-387. Toweill DL, Kovarik WD, Carr R, Kaplan D, Lai S, Bratton S, and Goldstein B. 2003. Linear and nonlinear analysis of heart rate variability during propofol anesthesia for short-duration procedures in children. Pediatr Crit Care Med 4(3):308-314. Tramer MR, Moore RA, and McQuay HJ. 1997. Propofol and bradycardia: causation, frequency and severity. Br J Anaesth 78(6):642-651. Triedman JK, Cohen RJ, and Saul JP. 1993. Mild hypovolemic stress alters autonomic modulation of heart rate. Hypertension 21(2):236-247. Tulppo MP, Hughson RL, Makikallio TH, Airaksinen KE, Seppanen T, and Huikuri HV. 2001a. Effects of exercise and passive head-up tilt on fractal and complexity properties of heart rate dynamics. Am J Physiol Heart Circ Physiol 280(3):H1081-1087. Tulppo MP, Kiviniemi AM, Hautala AJ, Kallio M, Seppanen T, Makikallio TH, and Huikuri HV. 2005. Physiological background of the loss of fractal heart rate dynamics. Circulation 112(3):314-319. Tulppo MP, Makikallio TH, Seppanen T, Airaksinen JK, and Huikuri HV. 1998. Heart rate dynamics during accentuated sympathovagal interaction. Am J Physiol 274(3 Pt 2):H810-816. Tulppo MP, Makikallio TH, Seppanen T, Shoemaker K, Tutungi E, Hughson RL, and Huikuri HV. 2001b. Effects of pharmacological adrenergic and vagal modulation on fractal heart rate dynamics. Clin Physiol 21(5):515-523. Vaghadia H, McLeod DH, Mitchell GW, Merrick PM, and Chilvers CR. 1997. Small-dose hypobaric lidocaine-fentanyl spinal anesthesia for short duration outpatient laparoscopy. I. A randomized comparison with conventional dose hyperbaric lidocaine. Anesth Analg 84(1):59-64. Vaillancourt DE, and Newell KM. 2002. Changing complexity in human behavior and physiology through aging and disease. Neurobiol Aging 23(1):1-11. van Boven AJ, Jukema JW, Haaksma J, Zwinderman AH, Crijns HJ, and Lie KI. 1998. Depressed heart rate variability is associated with events in patients with stable coronary artery disease and preserved left ventricular function. REGRESS Study Group. Am Heart J 135(4):571-576. van de Borne P, Montano N, Pagani M, Oren R, and Somers VK. 1997. Absence of low-frequency variability of sympathetic nerve activity in severe heart failure. Circulation 95(6):1449-1454. Vikman S, Makikallio TH, Yli-Mayry S, Pikkujamsa S, Koivisto AM, Reinikainen P, Airaksinen KE, and Huikuri HV. 1999. Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation. Circulation 100(20):2079-2084. Viswanathan GM, Peng CK, Stanley HE, and Goldberger AL. 1997. Deviations from uniform power law scaling in nonstationary time series. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 55(1):845-849. Waara-Wolleat KL, Hildebrand KR, and Stewart GR. 2006. A review of intrathecal fentanyl and sufentanil for the treatment of chronic pain. Pain Med 7(3):251-259. Weiskopf RB, Eger EI, 2nd, Noorani M, and Daniel M. 1994a. Repetitive rapid increases in desflurane concentration blunt transient cardiovascular stimulation in humans. Anesthesiology 81(4):843-849. Weiskopf RB, Moore MA, Eger EI, 2nd, Noorani M, McKay L, Chortkoff B, Hart PS, and Damask M. 1994b. Rapid increase in desflurane concentration is associated with greater transient cardiovascular stimulation than with rapid increase in isoflurane concentration in humans. Anesthesiology 80(5):1035-1045. Widmark C, Olaison J, Reftel B, Jonsson LE, and Lindecrantz K. 1998. Spectral analysis of heart rate variability during desflurane and isoflurane anaesthesia in patients undergoing arthroscopy. Acta Anaesthesiol Scand 42(2):204-210. Willson K, and Francis DP. 2003. A direct analytical demonstration of the essential equivalence of detrended fluctuation analysis and spectral analysis of RR interval variability. Physiol Meas 24(1):N1-7. Wolf MM, Varigos GA, Hunt D, and Sloman JG. 1978. Sinus arrhythmia in acute myocardial infarction. Med J Aust 2(2):52-53. Wu ZK, Vikman S, Laurikka J, Pehkonen E, Iivainen T, Huikuri HV, and Tarkka MR. 2005. Nonlinear heart rate variability in CABG patients and the preconditioning effect. Eur J Cardiothorac Surg 28(1):109-113. Yamamoto S, Kawana S, Miyamoto A, Ohshika H, and Namiki A. 1999. Propofol-induced depression of cultured rat ventricular myocytes is related to the M2-acetylcholine receptor-NO-cGMP signaling pathway. Anesthesiology 91(6):1712-1719. Yien HW, Hseu SS, Lee LC, Kuo TB, Lee TY, and Chan SH. 1997. Spectral analysis of systemic arterial pressure and heart rate signals as a prognostic tool for the prediction of patient outcome in the intensive care unit. Crit Care Med 25(2):258-266. Zhang CL, and Popp FA. 1994. Log-normal distribution of physiological parameters and the coherence of biological systems. Med Hypotheses 43(1):11-16. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46704 | - |
dc.description.abstract | 一、研究背景及目的:
利用時域(time domain)及頻域(frequency domain)分析法,分析心率變異性(heart rate variability,HRV),不論是在健康者或心血管疾病患者,此線性(linear)分析法為最常使用於評估心臟自律神經調節的狀況。然而,人類的心率變動卻隱藏著非線性(nonlinear)的特色,故新的分析技術也被發展來探測心率行為,希望能彌補傳統分析方法所未能偵測到的部分。去勢波動分析法(detrended fluctuation analysis,DFA)即是其一,它描述了一系列心跳間距(R-R interval)的碎形相關性(fractal-like correlation)。另外取樣熵(sample entropy,SampEn)為另一種非線性方法,可以用來定量複雜度。 當碎形相關性降低,也就是碎形的模式被破壞,代表著心血管事件及死亡率的風險性增加,然而,針對碎形的心率變動性背後之病生理基礎並未清楚了解。文獻中雖已有繁多麻醉相關所造成的頻譜研究,來探討自律神經的變化,但是卻少有以麻醉介入後所造成的短幅碎形變化之研究,故我們的研究目標為探討半身麻醉及全身麻醉對自律神經的調節所造成碎形相關性的影響,並輔以傳統線性分析分式及SampEn加以比較及說明其對HRV造成影響之生理意義。 二、研究方法: 本研究經人體試驗委員會同意及病人簽署同意書,我們選100位美國麻醉醫學會體位分級 (ASA classification) 第一級,年紀介於20-50歲中間,預定接受常規手術的病患。排除有嚴重心肌梗塞、鬱血性心臟病、糖尿病、聽覺障礙以及其他影響自主神經系統的疾病,同時沒有服用影響心臟血管的藥物。為了觀察短幅碎形尺度指數α1(short-term fractal scaling exponent)、傳統線性頻譜分析及SampEn,實驗將病人分成(1)半身麻醉組:1)一般劑量組(HM)(n=19),2)低劑量組(LM)(n=20),3)低劑量+吩坦尼組(LMf)(n=20);(2)全身麻醉組:1)靜脈麻醉劑propofol組(n=15),2)吸入性麻醉劑desflurane 組(n=18)。每位病患由於須進行手術的緣故,皆於術前空腹八小時,且在手術前兩天禁止劇烈運動及飲用含酒精或咖啡因之飲料,到達手術室時,先利用心電圖記錄器(MSI® Portable ECG Recorder and analyzer, E3-8010),讓病患平躺於安靜的環境中,先經5分鐘的測試讓心電圖波形達到平穩,之後連續紀錄心電圖變化。半身麻醉組:HM及LM組分別接受0.5% Hyperbaric bupivacain 12mg及6mg,LMf組接受0.5% Hyperbaric bupivacain 6mg及20μg fentanyl ;而全身麻醉組皆以面罩式100%氧氣給予持續 2-3分鐘,propofol組接受300μg/kg/min propofol持續靜脈注射,desflurane組接受fentanyl 1μg/kg的靜脈注射,並給予O2及N2O (1:1),以3%-6%-9%-12% desflrane漸進方式來誘導,直到麻醉深度偵測器之指標AAI (A-Line ARX Index)降到35以下,其中持續偵測血氧飽合濃度和吐氣末二氧化碳,並以溫和間歇正壓呼吸 (IPPV) 從面罩式給予氧氣,以維持正常呼吸。 將基礎及麻醉後的心電圖資料,傳輸至電腦進行非線性方法—DFA、SampEn,及線性方法--LF/HF ratio (low-/high-frequency power ratio)、SDNN(Standard deviation of the NN interval)、RMSSD(Square root of the mean squared differences of consecutive NN interval)及SI(Similarity index)分析。 三、研究結果: 研究結果發現在給予半身麻醉的三組,其α1皆下降(HM由1.24±0.15à0.78±0.11;LM由1.32±0.25à0.98±0.21;LMf由1.28±0.17à0.8±0.21,P皆<0.0001);在全身麻醉propofol 及desflurane組,AAI介於35及60時,α1增加(分別P<0.05,及P<0.001),至AAI小於35時,α1皆呈現下降(propofol組1.14±0.2à0.94±0.35;P<0.05; desflurane組1.1±0.26à0.7±0.31;P<0.0001)。在半身麻醉三組及desflurane組中,normalized high frequency(nHF)能量增加,normalized low frequency(nLF)能量減少,LF/HF ratio (LHR)降低(p<0.05)。SampEn在LM、LMf及desflurane組呈現下降。利用ROC (receiver operating characteristic) curve 分析結果顯示,以DFAα1相較於其它線性方法,用來區分麻醉前後具有較佳的敏感度及特異性。 四、結論 在半身麻醉不同劑量及合併fentanyl,與吸入性氣體麻醉劑desflurane及靜脈麻醉劑propofol達AAI小於35的麻醉深度時,α1與麻醉前基礎值相比,皆顯著降低,顯示不同麻醉方法介入後造成心率的非線性訊號產生動態變化,皆使心率短幅碎形相關性降低,而趨於更隨機的變化。此外,在全身麻醉組發現隨著麻醉深度加深的過程中α1有雙向性的改變(由增加到減低),在未達AAI<35時,α1增加意味著此階段的短幅碎形關係增強。對半身麻醉及全身麻醉而言,DFAα1比傳統線性方法對於區分麻醉前後具有更佳的指標性。 | zh_TW |
dc.description.abstract | Key words: Heart rate variability, spinal anesthesia, general anesthesia, detrended fluctuation analysis, sample entropy, linear analysis
Background Time and frequency domain analyses of heart rate variability (HRV) are the most commonly used noninvasive methods to evaluate autonomic regulation of heart rate in healthy subjects as well as in patients with cardiovascular disorders. Because nonlinear phenomena are involved in the genesis of human heart rate fluctuations, new analysis techniques have been developed to probe features in heart rate behavior that are not detectable by traditional analysis methods. Analysis of fractal scaling exponents by detrended fluctuation analysis (DFA) is one such method that describes the fractal-like correlation properties of R-R interval data. Sample entropy (SampEn) is another nonlinear method that quantifies the amount of complexity in the time-series data. Breakdown of short-term fractal-like behaviour of heart rate indicates an increased risk for adverse cardiovascular events and mortality, but the pathophysiological background for altered fractal heart rate dynamics is not known. Despite a large body of data concerning the changes in spectral characteristics of HRV during anesthesia, there is little information on the effects of theses physiological interventions on non-linear characteristics of heart rate behavior. This study was designed to assess the changes in the nonlinear features of HRV caused by the spinal anesthesia and general anesthesia. The main purpose was to gain insight into the physiological background for fractal and complexity characteristics of heart rate dynamics. Short-term fractal scaling exponent (α1)along with spectral components of HRV were analyzed during the following anesthesia interventions in patients : (1) spinal anesthesia group : 1)normal dose (Group HM, n=19), 2)low dose (Group LM, n=20), 3) low dose combine fentanyl (Group LMf, n=20); (2) general anesthesia group: 1)total intravenous propofol infusion (Group P, n=15),2) inhalation induction with desflurane (Group D, n=18) Method After institutional ethical approval and getting informed consent, we recorded the electrocardiogram of 100 ASA class I (American Society of Anesthesiologist physical status class I) patients proposed to receive elective surgery. Patients were excluded if they suffered from severe ischemic heart disease, congestive heart failure, diabetes mellitus, or other disorders known to affect autonomic function. None of the patient was taking medications that affect cardiovascular function. Each patient fasted at least 8h prior to testing. Vigorous exercise, alcohol and coffee were also forbidden for 48 h before the operation. On arrival to the operating room, the patients lay in a supine position in a quiet room at least 5 min prior to data collection. In Group HM and LM, 12mg and 6mg of 0.5% hyperbaric bupivacain were injected respectively. In Group LMf, 6mg of 0.5% hyperbaric bupivacaine was supplemented with 20μg of intrathecal fentanyl. All patients received 100% oxygen via face mask for 2 to 3 min prior to induction of general anesthesia. In Group P, patients received propofol infusion at a rate of 300ug/kg/min . In Group D, anesthesia was induced with 3-6-9-12% desflurane increasing gradually in 2L/min O2 and 2L/min N20. Arterial oxygen saturation (SpO2) and end-tidal carbon dioxide (ETCO2) were monitored, and normoventilation was maintained with gentle IPPV via mask if required. Depth of anesthesia was monitor by AAI (A-Line ARX Index) continuously until the value reached 35. Therefore, the HRV measurements were performed at AAI values of 60 to 35 and less than 35. The electrocardiogram data was transferred into the hard disk in a personal computer and offline analysis was performed. Results Short-term fractal scaling exponent (α1) decreased during spinal anesthesia in three groups ( Group HM:from 1.24±0.15 to 0.78±0.11;Group LM:from 1.32±0.25 to 0.98±0.21;Group LMf:from 1.28±0.17 to 0.8±0.21,P<0.0001).α1 increased during both general anesthesia group at AAI value of 60 to 35. Thenα1 decreased during the AAI value less than 35 (Group P: from 1.14±0.2 to 0.94±0.35,P<0.05; Group D:from 1.1±0.26 to 0.7±0.31,P<0.0001). Conventional HRV indices did not show the dynamic changes in Group P.Group HM, LM, LMf and Group D decreased the normalized low frequency spectral power and LF/HF ratio and increased normalized high frequency spectral power (p<0.05). SampEn value decreased in Group LM, LMf and Group D. In addition, the receiver operating characteristic (ROC) was used to estimate the sensitivity and specificity of classification of subjects in awake and after anesthesia states using different parameters. The results show that the DFAα1 is a better indicator for distinguishing baseline from anesthesia state. Conclusion Spinal and deep general anesthesia result the breakdown of short-term fractal-like behaviour of heart rate. Incremental depth of anesthesia until AAI less than 35 results in bidirectional changes in correlation properties of R-R interval dynamics. The results suggest that decrease sympathetic outflow at the same time activation of vagal outflow explains the breakdown of fractal-like behaviour of human heart rate dynamics. Change in α1 can be detected also in light anesthesia levels, when the conventional measures of HRV can not be applied. In addition, α1 is a better indicator for distinguishing baseline from spinal anesthesia state. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:24:24Z (GMT). No. of bitstreams: 1 ntu-99-P97421009-1.pdf: 1349233 bytes, checksum: 329957c8ff0b121f3f4d3de6d06452b6 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………i
誌謝……………………………………………………………2 中文摘要………………………………………………………3-5 英文摘要………………………………………………………6-8 縮寫表…………………………………………………………9 圖目錄…………………………………………………………11 表目錄…………………………………………………………12 一、緒論………………………………………………………13-30 二、研究方法與材料…………………………………………30-32 三、結果………………………………………………………33-35 四、討論………………………………………………………35-39 五、展望………………………………………………………40-41 六、論文英文簡述……………………………………………41-51 七、參考文獻…………………………………………………52-61 八、附錄………………………………………………………62-106 | |
dc.language.iso | zh-TW | |
dc.title | 心率變異性的短幅碎形相關於不同麻醉方法下的探討 | zh_TW |
dc.title | Short-term correlation properties of R-R interval dynamics at different anesthesia methods | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 高嘉宏(Jia-Horng Kao),謝建興 | |
dc.subject.keyword | 心率變異,半身麻醉,全身麻醉,去勢波動分析法,取樣熵,線性分析法, | zh_TW |
dc.subject.keyword | Heart rate variability,spinal anesthesia,general anesthesia,detrended fluctuation analysis,sample entropy,linear analysis, | en |
dc.relation.page | 106 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-19 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。