Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46698
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳哲夫(Jeffrey D. Ward)
dc.contributor.authorAnton Santosoen
dc.contributor.author聖安同zh_TW
dc.date.accessioned2021-06-15T05:24:00Z-
dc.date.available2011-01-01
dc.date.copyright2010-07-21
dc.date.issued2010
dc.date.submitted2010-07-19
dc.identifier.citation1. Lipnizki, F., R.W. Field, and P.-K. Ten, Pervaporation-based hybrid process: a review of process design, applications and economics. Journal of Membrane Science, 1999. 153(2): p. 183-210.
2. Huang, R.Y.M., Pervaporation membrane separation processes. Membrane science and technology series ;. 1991, New York: Elsevier.
3. Wynn, N., Pervaporation Comes of Age. Chemical Engineering Progress, 2001. Oktober 2001: p. 66 - 72.
4. Jonquières, A., et al., Industrial state-of-the-art of pervaporation and vapour permeation in the western countries. Journal of Membrane Science, 2002. 206(1-2): p. 87-117.
5. Sander, U. and P. Soukup, Design and operation of a pervaporation plant for ethanol dehydration. Journal of Membrane Science, 1988. 36: p. 463-475.
6. Tusel, G.F. and H.E.A. Brüschke, Use of pervaporation systems in the chemical industry. Desalination, 1985. 53(1-3): p. 327-338.
7. Fontalvo, J., et al., Comparing Pervaporation and Vapor Permeation Hybrid Distillation Processes. Industrial & Engineering Chemistry Research, 2005. 44(14): p. 5259-5266.
8. Kober, P.A., Pervaporation, perstillation and percrystallization. Journal of the American Chemical Society, 1917. 39: p. 944-948.
9. Terminology for membranes and membrane processes (IUPAC Recommendation 1996). Journal of Membrane Science, 1996. 120(2): p. 149-159.
10. Shaban, H.I., Using pervaporation technique to separate water from organics. Chemical Engineering and Processing, 1996. 35(6): p. 429-434.
11. Lelkes, Z., et al., Rigorous MINLP model for ethanol dehydration system. Computers & Chemical Engineering, 2000. 24(2-7): p. 1331-1336.
12. Szitkai, Z., et al., Optimization of hybrid ethanol dehydration systems. Chemical Engineering and Processing, 2002. 41(7): p. 631-646.
13. Marriott, J. and E. Sørensen, A general approach to modelling membrane modules. Chemical Engineering Science, 2003. 58(22): p. 4975-4990.
14. Bausa, J. and W. Marquardt, Shortcut Design Methods for Hybrid Membrane/Distillation Processes for the Separation of Nonideal Multicomponent Mixtures. Industrial & Engineering Chemistry Research, 2000. 39(6): p. 1658-1672.
15. Bausa, J., R.v. Watzdorf, and W. Marquardt, Shortcut methods for nonideal multicomponent distillation: I. Simple columns. AIChE Journal, 1998. 44(10): p. 2181-2198.
16. Watzdorf, R.v., J. Bausa, and W. Marquardt, Shortcut methods for nonideal multicomponent distillation: 2. Complex columns. AIChE Journal, 1999. 45(8): p. 1615-1628.
17. Gooding, C.H. and F.J. Bahouth, Membrane-Aided Distillation Azeotropic Solutions. Chemical Engineering Communications, 1985. 35(1-6): p. 267-279.
18. Van Hoof, V., et al., Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol. Separation and Purification Technology, 2004. 37(1): p. 33-49.
19. Pressly, T.G. and K.M. Ng, A break-even analysis of distillation-membrane hybrids. AIChE Journal, 1998. 44(1): p. 93-105.
20. Luyben, W.L., Control of a Column/Pervaporation Process for Separating the Ethanol/Water Azeotrope. Industrial & Engineering Chemistry Research, 2009. 48(7): p. 3484-3495.
21. Tsuyumoto, M., A. Teramoto, and P. Meares, Dehydration of ethanol on a pilot-plant scale, using a new type of hollow-fiber membrane. Journal of Membrane Science, 1997. 133(1): p. 83-94.
22. Kroschwitz, J.I. and A. Seidel, Kirk-Othmer encyclopedia of chemical technology. 2007, Hoboken, N.J.: Wiley-Interscience.
23. Arifin, S. and I.L. Chien, Design and Control of an Isopropyl Alcohol Dehydration Process via Extractive Distillation Using Dimethyl Sulfoxide as an Entrainer. Industrial & Engineering Chemistry Research, 2008. 47(3): p. 790-803.
24. Zeng, C., et al., Infinite Dilute Activity and Diffusion Coefficients in Polymers by Inverse Gas Chromatography. Journal of Chemical & Engineering Data, 2005. 51(1): p. 93-98.
25. Yeom, C.K. and R.Y.M. Huang, Modelling of the pervaporation separation of ethanol-water mixtures through crosslinked poly(vinyl alcohol) membrane. Journal of Membrane Science, 1992. 67(1): p. 39-55.
26. Yeom, C.K. and R.Y.M. Huang, A new method for determining the diffusion coefficients of penetrants through polymeric membranes from steady state pervaporation experiments. Journal of Membrane Science, 1992. 68(1-2): p. 11-20.
27. Chen, F. and H. Chen, Pervaporation separation of ethylene glycol/water mixtures using crosslinked PVA/PES composite membranes. Part II. The swelling equilibrium model of the dense active layer in ethylene glycol/water mixtures. Journal of Membrane Science, 1996. 118(2): p. 169-176.
28. Verhoef, A., et al., Simulation of a hybrid pervaporation-distillation process. Computers & Chemical Engineering, 2008. 32(6): p. 1135-1146.
29. Daviou, M.C., P.M. Hoch, and A.M. Eliceche, Design of Membrane Modules Used in Hybrid Distillation/Pervaporation Systems. Industrial & Engineering Chemistry Research, 2004. 43(13): p. 3403-3412.
30. Greenlaw, F.W., et al., Dependence of diffusive permeation rates on upstream and downstream pressures : I. Single component permeant. Journal of Membrane Science, 1977. 2: p. 141-151.
31. Brun, J.P., et al., Modelling of the pervaporation of binary mixtures through moderately swelling, non-reacting membranes. Journal of Membrane Science, 1985. 23(3): p. 257-283.
32. Biegler, L.T., I.E. Grossmann, and A.W. Westerberg, Systematic methods of chemical process design. Prentice Hall international series in the physical and chemical engineering sciences. 1997, Upper Saddle River, N.J.: Prentice Hall PTR.
33. Luyben, W.L., Distillation design and control using Aspen simulation. 2006, New Jersey: Hoboken, N.J. : Wiley-Interscience.
34. Shen, S.-H. and C.-C. Yu, Use of relay-feedback test for automatic tuning of multivariable systems. AIChE Journal, 1994. 40(4): p. 627-646.
35. Yu, C.-C., Autotuning of PID controllers : a relay feedback approach. 2006, London ;: Springer.
36. Luyben, W.L., B.D. Tyreus, and M.L. Luyben, Plantwide Process Control. 1998, New York: McGraw-Hill Professional Publishing.
37. Luyben, W.L., Practical distillation control. 1992, New York: Van Nostrand Reinhold.
38. Luyben, W.L., Snowball effects in reactor/separator processes with recycle. Industrial & Engineering Chemistry Research, 1994. 33(2): p. 299-305.
39. Bildea, C.S. and A.C. Dimian, Fixing Flow Rates in Recycle Systems: Luyben's Rule Revisited. Industrial & Engineering Chemistry Research, 2003. 42(20): p. 4578-4585.
40. Widagdo, S. and W.D. Seider, Journal review. Azeotropic distillation. AIChE Journal, 1996. 42(1): p. 96-130.
41. Gunawan, Design and Control of Ethanol Dehydration Process, in Chemical Engineering. 2009, National Taiwan University Science and Technology: Taipei.
42. Laroche, L., et al., Homogeneous azeotropic distillation: Comparing entrainers. The Canad@
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46698-
dc.description.abstract本研究完成了混合式薄膜蒸餾系統之完整設計的最適化設計,並探討了利用內部式回收改良設計的可能性,而研究結果發現內部式回收應用在滲透蒸發單元只改善了部分的設計案例,所以我們利用經過無因次化的方程式來決定究竟回收是否有益。經推導完成的通用架構,進一步了解內部式回收的作用。在此以通用架構探討兩個真實系統:乙醇─水以及異丙醇─水的分離。不含內部式回收的最適化結果證明了不同的共沸組成造成不同的最適化程序組態。乙醇系統的最適化設計包含了單根蒸餾塔加上後接的薄膜單元串接。而異丙醇系統的組態則是需加上第二根蒸餾塔才是較經濟的設計。最後經由分析得知適當應用內部式回收可以進一步改良上述兩個製程。在系統動態方面,兩個製程的控制架構均已建立,並確定了兩個系統的可控制性。而系統動態模擬發現了包含內部式回收的系統動態響應比不含內部式回收的系統較慢。zh_TW
dc.description.abstractThe optimization of complete designs for hybrid membrane-distillation systems is done in this research. The possibility of design improvement by using internal recycle is investigated. Internal recycle in pervaporation only improves the design in some cases. These conditions where internal recycle is beneficial are determined by studying the generalized dimensionless equations. The result is a general framework for understanding internal recycle. Two real systems which are ethanol – water and isopropanol - water system are also investigated. Optimization results without the recycle show the difference in the azeotrope composition causes a difference in the optimum process configuration. The optimal design for ethanol system has a single distillation column followed by a membrane cascade. On other hand, for the isopropyl alcohol system a second distillation column in the configuration gives a better design. The appropriate application of internal recycle further improves the design in both cases. Control structures for these designs are developed to ensure the controllability of the process. The dynamic simulation of the system with internal recycle shows a slower response compared to those without internal recycle.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:24:00Z (GMT). No. of bitstreams: 1
ntu-99-R97524089-1.pdf: 2864180 bytes, checksum: cd4c9bf63b7b4b8e7f3966172167b2ee (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要 i
Abstract iii
Acknowledgements v
Table of Contents vii
List of Figures xiii
List of Tables xix
1 Introduction 1
1.1 Overview 1
1.2 Pervaporation 2
1.3 Hybrid Membrane-Distillation 4
1.4 Internal Recycle 7
1.5 Problem Formulation 7
1.6 Thesis Organization 10
2 Pervaporation Process and Modeling 11
2.1 Overview 11
2.2 Pervaporation Process 12
2.3 Pervaporation Modeling 13
2.3.1 Plug Flow Model 14
2.3.2 Lumped System Model 16
2.4 The Effect of Inlet Variables 18
2.5 Internal Configuration 19
2.6 Improving Design by Recycle 21
2.7 Model Simplification and Dimensional Analysis 25
2.8 Framework of Improving Design by Internal Recycle 31
3 Design of Hybrid Distillation-Membrane System 35
3.1 Overview 35
3.2 Configuration Alternatives 35
3.3 Optimization 37
3.3.1 Optimization Procedure 37
3.3.2 Material Balance Equations 38
3.3.2.1 Material Balance for Design A 38
3.3.2.2 Material Balance for Design B 40
3.3.3 The Iterative Procedure for Distillation 41
3.3.4 The Iterative Procedure for Pervaporation 43
3.4 Optimum Steady State Design 45
3.4.1 Optimum Steady State Design of Ethanol-Water System 45
3.4.1.1 Design A 45
3.4.1.2 Design B 46
3.4.2 Optimum Steady State Design of IPA-water system 49
3.4.2.1 Design A 49
3.4.2.2 Design B 51
3.4.3 Conclusion of Design without Recycle 54
3.5 Optimum Steady State Design with Recycle 55
3.5.1 Overview 55
3.5.2 Optimum Steady State Design with Recycle for Ethanol-Water System 56
3.5.3 Optimum Steady State Design with Recycle for IPA-Water System 58
4 Control of Hybrid Distillation-Membrane System 59
4.1 Overview 59
4.2 Control of Hybrid Distillation-Membrane of Ethanol-Water without Recycle 60
4.2.1 Temperature Measurement Selection 60
4.2.2 Proposed Control Structure of the Hybrid System 61
4.2.3 Comparison the Proposed Control Structure with Other Possible Control Structure 63
4.2.3.1 Three Temperature Controllers and Six Temperature Controllers 64
4.2.3.2 Control Structure Using Dual Temperature Control 66
4.2.4 Dynamic Response of proposed Control Structure 70
4.3 Control of Hybrid Distillation-Membrane of IPA-Water without Recycle 73
4.3.1 Temperature Measurement Selection 73
4.3.2 Proposed Control Structure 74
4.3.3 Ratio Control in the first Column 76
4.3.4 Dynamic Response of Proposed Control Structure 78
4.4 Dynamic Response of Hybrid with Internal Recycle 82
4.4.1 Effect of Internal Recycle in Dynamic for Design of Ethanol-Water System 82
4.4.2 Effect of Internal Recycle in Dynamic for Design of IPA-Water System 86
5 Economical Analysis 91
5.1 Overview 91
5.2 Comparison Price 91
5.2.1 Alternative design 92
5.2.1.1 Extractive Distillation for Ethanol-Water system 92
5.2.1.2 Extractive Distillation for IPA-Water system 93
5.2.2 Comparison 95
5.3 Cost Analysis 97
5.3.1 Cost Sensitivity 97
5.3.2 Break-even Analysis 98
6 Conclusion 101
Appendix A (Cost Model) 104
Appendix B (Tuning Parameters) 109
Appendix C (Binary VLE phase diagrams) 111
References 113
Nomenclature 119
Autobiography 123
dc.language.isoen
dc.subject內部式回收zh_TW
dc.subject共沸物zh_TW
dc.subject混合蒸餾膜zh_TW
dc.subject最適化zh_TW
dc.subject設計zh_TW
dc.subject控制zh_TW
dc.subjectdesignen
dc.subjectinternal recycleen
dc.subjectcontrolen
dc.subjectazeotropeen
dc.subjecthybrid distillation-membraneen
dc.subjectoptimizationen
dc.title利用混合式薄膜蒸餾系統對共沸組成混合物分離之設計與控制zh_TW
dc.titleDesign and Control of Hybrid Distillation-Membrane Systems for Separating Azeotropic Mixturesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳誠亮(Cheng-Liang Chen),周宜雄(Yi-Shyong Chou),王聖潔(San-Jang Wang)
dc.subject.keyword共沸物,混合蒸餾膜,最適化,設計,控制,內部式回收,zh_TW
dc.subject.keywordazeotrope,hybrid distillation-membrane,optimization,design,control,internal recycle,en
dc.relation.page123
dc.rights.note有償授權
dc.date.accepted2010-07-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved