請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46693完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張明富 | |
| dc.contributor.author | I-Yin Chen | en |
| dc.contributor.author | 陳奕穎 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:23:40Z | - |
| dc.date.available | 2011-09-09 | |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-19 | |
| dc.identifier.citation | 1.Akpinar, P., S. Kuwajima, J. Krutzfeldt, and M. Stoffel. 2005. Tmem27: a cleaved and shed plasma membrane protein that stimulates pancreatic beta cell proliferation. Cell. Metab. 2:385-397.
2.Allavena, P., G. Bianchi, D. Zhou, J. van Damme, P. Jilek, S. Sozzani, and A. Mantovani. 1994. Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3. Eur. J. Immunol. 24:3233-3236. 3.An, S., C. J. Chen, X. Yu, J. L. Leibowitz, and S. Makino. 1999. Induction of apoptosis in murine coronavirus-infected cultured cells and demonstration of E protein as an apoptosis inducer. J. Virol. 73:7853-7859. 4.Appelmelk, B. J., I. van Die, S. J. van Vliet, C. M. Vandenbroucke-Grauls, T. B. Geijtenbeek, and Y. van Kooyk. 2003. Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J. Immunol. 170:1635-1639. 5.Babcock, G. J., D. J. Esshaki, W. D. Thomas, Jr., and D. M. Ambrosino. 2004. Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J. Virol. 78:4552-4560. 6.Baudoux, P., C. Carrat, L. Besnardeau, B. Charley, and H. Laude. 1998. Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes. J. Virol. 72:8636-8643. 7.Baumert, T. F., S. Ito, D. T. Wong, and T. J. Liang. 1998. Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J. Virol. 72:3827-3836. 8.Bikfalvi, A., and R. Bicknell. 2002. Recent advances in angiogenesis, anti-angiogenesis and vascular targeting. Trends Pharmacol. Sci. 23:576-582. 9.Bos, E. C., W. Luytjes, H. V. van der Meulen, H. K. Koerten, and W. J. Spaan. 1996. The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology 218:52-60. 10.Carr, M. W., S. J. Roth, E. Luther, S. S. Rose, and T. A. Springer. 1994. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA 91:3652-3656. 11.Castilletti, C., L. Bordi, E. Lalle, G. Rozera, F. Poccia, C. Agrati, I. Abbate, and M. R. Capobianchi. 2005. Coordinate induction of IFN-alpha and -gamma by SARS-CoV also in the absence of virus replication. Virology 341:163-169. 12.Chakraborti, S., P. Prabakaran, X. Xiao, and D. S. Dimitrov. 2005. The SARS coronavirus S glycoprotein receptor binding domain: fine mapping and functional characterization. Virol. J. 2:73. 13.Chang, L., and M. Karin. 2001. Mammalian MAP kinase signalling cascades. Nature 410:37-40. 14.Chang, M. F., C. Y. Sun, C. J. Chen, and S. C. Chang. 1993. Functional motifs of delta antigen essential for RNA binding and replication of hepatitis delta virus. J. Virol. 67:2529-2536. 15.Chang, Y. J., C. Y. Liu, B. L. Chiang, Y. C. Chao, and C. C. Chen. 2004. Induction of IL-8 release in lung cells via activator protein-1 by recombinant baculovirus displaying severe acute respiratory syndrome-coronavirus spike proteins: identification of two functional regions. J. Immunol. 173:7602-7614. 16.Chen, J., and K. Subbarao. 2007. The Immunobiology of SARS. Annu. Rev. Immunol. 25:443-472. 17.Cheung, C. Y., L. L. Poon, I. H. Ng, W. Luk, S. F. Sia, M. H. Wu, K. H. Chan, K. Y. Yuen, S. Gordon, Y. Guan, and J. S. Peiris. 2005. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J. Virol. 79:7819-7826. 18.Cho, N. H., S. Y. Seong, M. S. Huh, N. H. Kim, M. S. Choi, and I. S. Kim. 2002. Induction of the gene encoding macrophage chemoattractant protein 1 by Orientia tsutsugamushi in human endothelial cells involves activation of transcription factor activator protein 1. Infect. Immun. 70:4841-4850. 19.Chow, K. C., C. H. Hsiao, T. Y. Lin, C. L. Chen, and S. H. Chiou. 2004. Detection of severe acute respiratory syndrome-associated coronavirus in pneumocytes of the lung. Am. J. Clin. Pathol. 121:574-580. 20.Corse, E., and C. E. Machamer. 2000. Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. J. Virol. 74:4319-4326. 21.Cushman, D. W., and M. A. Ondetti. 1999. Design of angiotensin converting enzyme inhibitors. Nat. Med. 5:1110-1113. 22.Danilczyk, U., R. Sarao, C. Remy, C. Benabbas, G. Stange, A. Richter, S. Arya, J. A. Pospisilik, D. Singer, S. M. Camargo, V. Makrides, T. Ramadan, F. Verrey, C. A. Wagner, and J. M. Penninger. 2006. Essential role for collectrin in renal amino acid transport. Nature 444:1088-1091. 23.de Haan, C. A., L. Kuo, P. S. Masters, H. Vennema, and P. J. Rottier. 1998. Coronavirus particle assembly: primary structure requirements of the membrane protein. J. Virol. 72:6838-6850. 24.Donoghue, M., F. Hsieh, E. Baronas, K. Godbout, M. Gosselin, N. Stagliano, M. Donovan, B. Woolf, K. Robison, R. Jeyaseelan, R. E. Breitbart, and S. Acton. 2000. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 87:E1-9. 25.Drosten, C., S. Gunther, W. Preiser, S. van der Werf, H. R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. Fouchier, A. Berger, A. M. Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J. C. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H. D. Klenk, A. D. Osterhaus, H. Schmitz, and H. W. Doerr. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348:1967-1976. 26.Elias, J. A., B. Freundlich, J. A. Kern, and J. Rosenbloom. 1990. Cytokine networks in the regulation of inflammation and fibrosis in the lung. Chest 97:1439-1445. 27.Fang, X., J. Gao, H. Zheng, B. Li, L. Kong, Y. Zhang, W. Wang, Y. Zeng, and L. Ye. 2007. The membrane protein of SARS-CoV suppresses NF-kappaB activation. J. Med. Virol. 79:1431-1439. 28.Feinberg, H., D. A. Mitchell, K. Drickamer, and W. I. Weis. 2001. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294:2163-2166. 29.Fielding, B. C., V. Gunalan, T. H. Tan, C. F. Chou, S. Shen, S. Khan, S. G. Lim, W. Hong, and Y. J. Tan. 2006. Severe acute respiratory syndrome coronavirus protein 7a interacts with hSGT. Biochem. Biophys. Res. Commun. 343:1201-1208. 30.Fielding, B. C., Y. J. Tan, S. Shuo, T. H. Tan, E. E. Ooi, S. G. Lim, W. Hong, and P. Y. Goh. 2004. Characterization of a unique group-specific protein (U122) of the severe acute respiratory syndrome coronavirus. J. Virol. 78:7311-7318. 31.Frade, J. M., M. Mellado, G. del Real, J. C. Gutierrez-Ramos, P. Lind, and A. C. Martinez. 1997. Characterization of the CCR2 chemokine receptor: functional CCR2 receptor expression in B cells. J. Immunol. 159:5576-5584. 32.French, T. J., J. J. Marshall, and P. Roy. 1990. Assembly of double-shelled, virus-like particles of bluetongue virus by the simultaneous expression of four structural proteins. J. Virol. 64:5695-5700. 33.Fukui, K., Q. Yang, Y. Cao, N. Takahashi, H. Hatakeyama, H. Wang, J. Wada, Y. Zhang, L. Marselli, T. Nammo, K. Yoneda, M. Onishi, S. Higashiyama, Y. Matsuzawa, F. J. Gonzalez, G. C. Weir, H. Kasai, I. Shimomura, J. Miyagawa, C. B. Wollheim, and K. Yamagata. 2005. The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation. Cell. Metab. 2:373-384. 34.Gautam, S. C., C. J. Noth, N. Janakiraman, K. R. Pindolia, and R. A. Chapman. 1995. Induction of chemokine mRNA in bone marrow stromal cells: modulation by TGF-beta 1 and IL-4. Exp. Hematol. 23:482-491. 35.Gharaee-Kermani, M., E. M. Denholm, and S. H. Phan. 1996. Costimulation of fibroblast collagen and transforming growth factor alpha-1 gene expression by monocyte chemoattractant protein-1 via specific receptors. J. Biol. Chem. 271:17779-17784. 36.Godeke, G. J., C. A. de Haan, J. W. Rossen, H. Vennema, and P. J. Rottier. 2000. Assembly of spikes into coronavirus particles is mediated by the carboxy-terminal domain of the spike protein. J. Virol. 74:1566-1571. 37.Gorin, Y., J. M. Ricono, B. Wagner, N. H. Kim, B. Bhandari, G. G. Choudhury, and H. E. Abboud. 2004. Angiotensin II-induced ERK1/ERK2 activation and protein synthesis are redox-dependent in glomerular mesangial cells. Biochem. J. 381:231-239. 38.Groneberg, D. A., L. Zhang, T. Welte, P. Zabel, and K. F. Chung. 2003. Severe acute respiratory syndrome: global initiatives for disease diagnosis. QJM 96:845-852. 39.Guan, Y., B. J. Zheng, Y. Q. He, X. L. Liu, Z. X. Zhuang, C. L. Cheung, S. W. Luo, P. H. Li, L. J. Zhang, Y. J. Guan, K. M. Butt, K. L. Wong, K. W. Chan, W. Lim, K. F. Shortridge, K. Y. Yuen, J. S. Peiris, and L. L. Poon. 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276-278. 40.Gurkan, C., S. M. Stagg, P. Lapointe, and W. E. Balch. 2006. The COPII cage: unifying principles of vesicle coat assembly. Nat. Rev. Mol. Cell. Biol. 7:727-738. 41.Haga, S., N. Yamamoto, C. Nakai-Murakami, Y. Osawa, K. Tokunaga, T. Sata, T. Sasazuki, and Y. Ishizaka. 2008. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proc. Natl. Acad. Sci. USA 105:7809-7814. 42.Han, D. P., M. Lohani, and M. W. Cho. 2007. Specific asparagine-linked glycosylation sites are critical for DC-SIGN- and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry. J. Virol. 81:12029-12039. 43.He, R., A. Leeson, A. Andonov, Y. Li, N. Bastien, J. Cao, C. Osiowy, F. Dobie, T. Cutts, M. Ballantine, and X. Li. 2003. Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochem. Biophys. Res. Commun. 311:870-786. 44.He, R., A. Leeson, M. Ballantine, A. Andonov, L. Baker, F. Dobie, Y. Li, N. Bastien, H. Feldmann, U. Strocher, S. Theriault, T. Cutts, J. Cao, T. F. Booth, F. A. Plummer, S. Tyler, and X. Li. 2004. Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res. 105:121-125. 45.Homey, B., and A. Zlotnik. 1999. Chemokines in allergy. Curr. Opin. Immunol. 11:626-634. 46.Hong, P. W., K. B. Flummerfelt, A. de Parseval, K. Gurney, J. H. Elder, and B. Lee. 2002. Human immunodeficiency virus envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of gp120-DC-SIGN binding. J. Virol. 76:12855-12865. 47.Hoyt, D. G., and J. S. Lazo. 1988. Alterations in pulmonary mRNA encoding procollagens, fibronectin and transforming growth factor-beta precede bleomycin-induced pulmonary fibrosis in mice. J. Pharmacol. Exp. Ther. 246:765-771. 48.Hsiao, C. H., M. F. Chang, P. R. Hsueh, and I. J. Su. 2005. Immunohistochemical study of severe acute respiratory syndrome-associated coronavirus in tissue sections of patients. J. Formos. Med. Assoc. 104:150-156. 49.Hsieh, P. K., S. C. Chang, C. C. Huang, T. T. Lee, C. W. Hsiao, Y. H. Kou, I. Y. Chen, C. K. Chang, T. H. Huang, and M. F. Chang. 2005. Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J. Virol. 79:13848-13855. 50.Hsueh, P. R., C. H. Hsiao, S. H. Yeh, W. K. Wang, P. J. Chen, J. T. Wang, S. C. Chang, C. L. Kao, and P. C. Yang. 2003. Microbiologic characteristics, serologic responses, and clinical manifestations in severe acute respiratory syndrome. Taiwan Emerg. Infect. Dis. 9:1163-1167. 51.Huang, C., N. Ito, C. T. Tseng, and S. Makino. 2006. Severe acute respiratory syndrome coronavirus 7a accessory protein is a viral structural protein. J. Virol. 80:7287-7294. 52.Imbert-Bismut, F., V. Ratziu, L. Pieroni, F. Charlotte, Y. Benhamou, and T. Poynard. 2001. Biochemical markers of liver fibrosis in patients with hepatitis C virus infection: a prospective study. Lancet 357:1069-1075. 53.Iyer, S. N., D. B. Averill, M. C. Chappell, K. Yamada, A. J. Allred, and C. M. Ferrario. 2000. Contribution of angiotensin-(1-7) to blood pressure regulation in salt-depleted hypertensive rats. Hypertension 36:417-422. 54.Jarvis, D. L., and M. D. Summers. 1989. Glycosylation and secretion of human tissue plasminogen activator in recombinant baculovirus-infected insect cells. Mol. Cell Biol. 9:214-223. 55.Jeffers, S. A., S. M. Tusell, L. Gillim-Ross, E. M. Hemmila, J. E. Achenbach, G. J. Babcock, W. D. Thomas, Jr., L. B. Thackray, M. D. Young, R. J. Mason, D. M. Ambrosino, D. E. Wentworth, J. C. Demartini, and K. V. Holmes. 2004. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA 101:15748-15753. 56.Jiang, Y., J. Xu, C. Zhou, Z. Wu, S. Zhong, J. Liu, W. Luo, T. Chen, Q. Qin, and P. Deng. 2005. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am. J. Respir. Crit. Care. Med. 171:850-857. 57.Jonassen, C. M., T. O. Jonassen, and B. Grinde. 1998. A common RNA motif in the 3' end of the genomes of astroviruses, avian infectious bronchitis virus and an equine rhinovirus. J. Gen. Virol. 79 :715-718. 58.Kanzawa, N., K. Nishigaki, T. Hayashi, Y. Ishii, S. Furukawa, A. Niiro, F. Yasui, M. Kohara, K. Morita, K. Matsushima, M. Q. Le, T. Masuda, and M. Kannagi. 2006. Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation. FEBS Lett. 580:6807-6812. 59.Karin, M. 1995. The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270:16483-16486. 60.Keng, C. T., Y. W. Choi, M. R. Welkers, D. Z. Chan, S. Shen, S. Gee Lim, W. Hong, and Y. J. Tan. 2006. The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells. Virology 354:132-142. 61.Kohlstedt, K., R. P. Brandes, W. Muller-Esterl, R. Busse, and I. Fleming. 2004. Angiotensin-converting enzyme is involved in outside-in signaling in endothelial cells. Circ. Res. 94:60-67. 62.Kohlstedt, K., F. Shoghi, W. Muller-Esterl, R. Busse, and I. Fleming. 2002. CK2 phosphorylates the angiotensin-converting enzyme and regulates its retention in the endothelial cell plasma membrane. Circ. Res. 91:749-756. 63.Kopecky-Bromberg, S. A., L. Martinez-Sobrido, and P. Palese. 2006. 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase. J. Virol. 80:785-793. 64.Ksiazek, T. G., D. Erdman, C. S. Goldsmith, S. R. Zaki, T. Peret, S. Emery, S. Tong, C. Urbani, J. A. Comer, W. Lim, P. E. Rollin, S. F. Dowell, A. E. Ling, C. D. Humphrey, W. J. Shieh, J. Guarner, C. D. Paddock, P. Rota, B. Fields, J. DeRisi, J. Y. Yang, N. Cox, J. M. Hughes, J. W. LeDuc, W. J. Bellini, and L. J. Anderson. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348:1953-1966. 65.Kuba, K., Y. Imai, S. Rao, H. Gao, F. Guo, B. Guan, Y. Huan, P. Yang, Y. Zhang, W. Deng, L. Bao, B. Zhang, G. Liu, Z. Wang, M. Chappell, Y. Liu, D. Zheng, A. Leibbrandt, T. Wada, A. S. Slutsky, D. Liu, C. Qin, C. Jiang, and J. M. Penninger. 2005. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 11:875-879. 66.Kuba, K., Y. Imai, S. Rao, C. Jiang, and J. M. Penninger. 2006. Lessons from SARS: control of acute lung failure by the SARS receptor ACE2. J. Mol. Med. 84:814-820. 67.Kuiken, T., R. A. Fouchier, M. Schutten, G. F. Rimmelzwaan, G. van Amerongen, D. van Riel, J. D. Laman, T. de Jong, G. van Doornum, W. Lim, A. E. Ling, P. K. Chan, J. S. Tam, M. C. Zambon, R. Gopal, C. Drosten, S. van der Werf, N. Escriou, J. C. Manuguerra, K. Stohr, J. S. Peiris, and A. D. Osterhaus. 2003. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362:263-270. 68.Kuo, L., and P. S. Masters. 2003. The small envelope protein E is not essential for murine coronavirus replication. J. Virol. 77:4597-4608. 69.Kyriakis, J. M., and J. Avruch. 2001. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81:807-869. 70.Lambert, D. W., N. M. Hooper, and A. J. Turner. 2008. Angiotensin-converting enzyme 2 and new insights into the renin-angiotensin system. Biochem. Pharmacol. 75:781-786. 71.Lambert, D. W., M. Yarski, F. J. Warner, P. Thornhill, E. T. Parkin, A. I. Smith, N. M. Hooper, and A. J. Turner. 2005. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J. Biol. Chem. 280:30113-30119. 72.Lau, S. K., P. C. Woo, K. S. Li, Y. Huang, H. W. Tsoi, B. H. Wong, S. S. Wong, S. Y. Leung, K. H. Chan, and K. Y. Yuen. 2005. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA 102:14040-14045. 73.Law, P. T., C. H. Wong, T. C. Au, C. P. Chuck, S. K. Kong, P. K. Chan, K. F. To, A. W. Lo, J. Y. Chan, Y. K. Suen, H. Y. Chan, K. P. Fung, M. M. Waye, J. J. Sung, Y. M. Lo, and S. K. Tsui. 2005. The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J. Gen. Virol. 86:1921-1930. 74.Law, P. Y., Y. M. Liu, H. Geng, K. H. Kwan, M. M. Waye, and Y. Y. Ho. 2006. Expression and functional characterization of the putative protein 8b of the severe acute respiratory syndrome-associated coronavirus. FEBS Lett. 580:3643-3648. 75.Lee, N., D. Hui, A. Wu, P. Chan, P. Cameron, G. M. Joynt, A. Ahuja, M. Y. Yung, C. B. Leung, K. F. To, S. F. Lui, C. C. Szeto, S. Chung, and J. J. Sung. 2003. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348:1986-1994. 76.Leung, W. K., K. F. To, P. K. Chan, H. L. Chan, A. K. Wu, N. Lee, K. Y. Yuen, and J. J. Sung. 2003. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 125:1011-1017. 77.Li, F., W. Li, M. Farzan, and S. C. Harrison. 2005. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309:1864-1868. 78.Li, W., M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J. L. Sullivan, K. Luzuriaga, T. C. Greenough, H. Choe, and M. Farzan. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450-454. 79.Li, W., C. Zhang, J. Sui, J. H. Kuhn, M. J. Moore, S. Luo, S. K. Wong, I. C. Huang, K. Xu, N. Vasilieva, A. Murakami, Y. He, W. A. Marasco, Y. Guan, H. Choe, and M. Farzan. 2005. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24:1634-1643. 80.Li, Y. S., and P. E. Kolattukudy. 1994. Functional role of the cis-acting elements in human monocyte chemotactic protein-1 gene in the regulation of its expression by phorbol ester in human glioblastoma cells. Mol. Cell. Biochem. 141:121-128. 81.Liao, Q. J., L. B. Ye, K. A. Timani, Y. C. Zeng, Y. L. She, L. Ye, and Z. H. Wu. 2005. Activation of NF-kappaB by the full-length nucleocapsid protein of the SARS coronavirus. Acta. Biochim. Biophys. Sin. (Shanghai) 37:607-612. 82.Lin, G., G. Simmons, S. Pohlmann, F. Baribaud, H. Ni, G. J. Leslie, B. S. Haggarty, P. Bates, D. Weissman, J. A. Hoxie, and R. W. Doms. 2003. Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J. Virol. 77:1337-1346. 83.Lin, S., C. K. Lee, S. Y. Lee, C. L. Kao, C. W. Lin, A. B. Wang, S. M. Hsu, and L. S. Huang. 2005. Surface ultrastructure of SARS coronavirus revealed by atomic force microscopy. Cell. Microbiol. 7:1763-1770. 84.Lio, P., and N. Goldman. 2004. Phylogenomics and bioinformatics of SARS-CoV. Trends Microbiol. 12:106-111. 85.Lo, A. W., N. L. Tang, and K. F. To. 2006. How the SARS coronavirus causes disease: host or organism? J. Pathol. 208:142-151. 86.Lu, C. Y., H. Y. Huang, T. H. Yang, L. Y. Chang, C. Y. Lee, and L. M. Huang. 2008. siRNA silencing of angiotensin-converting enzyme 2 reduced severe acute respiratory syndrome-associated coronavirus replications in Vero E6 cells. Eur. J. Clin. Microbiol. Infect. Dis. 27:709-715. 87.Luo, C., H. Luo, S. Zheng, C. Gui, L. Yue, C. Yu, T. Sun, P. He, J. Chen, J. Shen, X. Luo, Y. Li, H. Liu, D. Bai, Y. Yang, F. Li, J. Zuo, R. Hilgenfeld, G. Pei, K. Chen, X. Shen, and H. Jiang. 2004. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochem. Biophys. Res. Commun. 321:557-565. 88.Marceau, F., J. F. Hess, and D. R. Bachvarov. 1998. The B1 receptors for kinins. Pharmacol. Rev. 50:357-386. 89.Marra, M. A., S. J. Jones, C. R. Astell, R. A. Holt, A. Brooks-Wilson, Y. S. Butterfield, J. Khattra, J. K. Asano, S. A. Barber, S. Y. Chan, A. Cloutier, S. M. Coughlin, D. Freeman, N. Girn, O. L. Griffith, S. R. Leach, M. Mayo, H. McDonald, S. B. Montgomery, P. K. Pandoh, A. S. Petrescu, A. G. Robertson, J. E. Schein, A. Siddiqui, D. E. Smailus, J. M. Stott, G. S. Yang, F. Plummer, A. Andonov, H. Artsob, N. Bastien, K. Bernard, T. F. Booth, D. Bowness, M. Czub, M. Drebot, L. Fernando, R. Flick, M. Garbutt, M. Gray, A. Grolla, S. Jones, H. Feldmann, A. Meyers, A. Kabani, Y. Li, S. Normand, U. Stroher, G. A. Tipples, S. Tyler, R. Vogrig, D. Ward, B. Watson, R. C. Brunham, M. Krajden, M. Petric, D. M. Skowronski, C. Upton, and R. L. Roper. 2003. The genome sequence of the SARS-associated coronavirus. Science 300:1399-1404. 90.Marzi, A., T. Gramberg, G. Simmons, P. Moller, A. J. Rennekamp, M. Krumbiegel, M. Geier, J. Eisemann, N. Turza, B. Saunier, A. Steinkasserer, S. Becker, P. Bates, H. Hofmann, and S. Pohlmann. 2004. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J. Virol. 78:12090-12095. 91.Mayr, G. A., M. Reed, P. Wang, Y. Wang, J. F. Schweds, and P. Tegtmeyer. 1995. Serine phosphorylation in the NH2 terminus of p53 facilitates transactivation. Cancer Res. 55:2410-2417. 92.Monje, P., M. J. Marinissen, and J. S. Gutkind. 2003. Phosphorylation of the carboxyl-terminal transactivation domain of c-Fos by extracellular signal-regulated kinase mediates the transcriptional activation of AP-1 and cellular transformation induced by platelet-derived growth factor. Mol. Cell Biol. 23:7030-7043. 93.Mortola, E., and P. Roy. 2004. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 576:174-178. 94.Musumice, V., S. Di Salvo, U. Campia, and C. Cardillo. 1995. Postprandial hemodynamic changes in hypertensives treated with calcium antagonists or ACE inhibitors. Am. J. Ther. 2:170-174. 95.Muzio, G., A. Trombetta, G. Martinasso, R. A. Canuto, and M. Maggiora. 2003. Antisense oligonucleotides against aldehyde dehydrogenase 3 inhibit hepatoma cell proliferation by affecting MAP kinases. Chem. Biol. Interact. 143-144:37-43. 96.Narayanan, K., C. Huang, and S. Makino. 2008. SARS coronavirus accessory proteins. Virus Res. 133:113-121. 97.Pan, J., M. Clayton, and M. A. Feitelson. 2004. Hepatitis B virus X antigen promotes transforming growth factor-beta1 (TGF-beta1) activity by up-regulation of TGF-beta1 and down-regulation of alpha2-macroglobulin. J. Gen. Virol. 85:275-282. 98.Peiris, J. S., S. T. Lai, L. L. Poon, Y. Guan, L. Y. Yam, W. Lim, J. Nicholls, W. K. Yee, W. W. Yan, M. T. Cheung, V. C. Cheng, K. H. Chan, D. N. Tsang, R. W. Yung, T. K. Ng, and K. Y. Yuen. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319-1325. 99.Phan, S. H., and S. L. Kunkel. 1992. Lung cytokine production in bleomycin-induced pulmonary fibrosis. Exp. Lung Res. 18:29-43. 100.Ping, D., P. L. Jones, and J. M. Boss. 1996. TNF regulates the in vivo occupancy of both distal and proximal regulatory regions of the MCP-1/JE gene. Immunity 4:455-469. 101.Pulverer, B. J., J. M. Kyriakis, J. Avruch, E. Nikolakaki, and J. R. Woodgett. 1991. Phosphorylation of c-jun mediated by MAP kinases. Nature 353:670-674. 102.Qinfen, Z., C. Jinming, H. Xiaojun, Z. Huanying, H. Jicheng, F. Ling, L. Kunpeng, and Z. Jingqiang. 2004. The life cycle of SARS coronavirus in Vero E6 cells. J. Med. Virol. 73:332-337. 103.Raamsman, M. J., J. K. Locker, A. de Hooge, A. A. de Vries, G. Griffiths, H. Vennema, and P. J. Rottier. 2000. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J. Virol. 74:2333-2342. 104.Rose, C. E., Jr., S. S. Sung, and S. M. Fu. 2003. Significant involvement of CCL2 (MCP-1) in inflammatory disorders of the lung. Microcirculation 10:273-288. 105.Rota, P. A., M. S. Oberste, S. S. Monroe, W. A. Nix, R. Campagnoli, J. P. Icenogle, S. Penaranda, B. Bankamp, K. Maher, M. H. Chen, S. Tong, A. Tamin, L. Lowe, M. Frace, J. L. DeRisi, Q. Chen, D. Wang, D. D. Erdman, T. C. Peret, C. Burns, T. G. Ksiazek, P. E. Rollin, A. Sanchez, S. Liffick, B. Holloway, J. Limor, K. McCaustland, M. Olsen-Rasmussen, R. Fouchier, S. Gunther, A. D. Osterhaus, C. Drosten, M. A. Pallansch, L. J. Anderson, and W. J. Bellini. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394-1399. 106.Roy, P., T. French, and B. J. Erasmus. 1992. Protective efficacy of virus-like particles for bluetongue disease. Vaccine 10:28-32. 107.Santhamma, K. R., and I. Sen. 2000. Specific cellular proteins associate with angiotensin-converting enzyme and regulate its intracellular transport and cleavage-secretion. J. Biol. Chem. 275:23253-23258. 108.Schubert, U., T. Schneider, P. Henklein, K. Hoffmann, E. Berthold, H. Hauser, G. Pauli, and T. Porstmann. 1992. Human-immunodeficiency-virus-type-1-encoded Vpu protein is phosphorylated by casein kinase II. Eur. J. Biochem. 204:875-883. 109.Shen, S., P. S. Lin, Y. C. Chao, A. Zhang, X. Yang, S. G. Lim, W. Hong, and Y. J. Tan. 2005. The severe acute respiratory syndrome coronavirus 3a is a novel structural protein. Biochem. Biophys. Res. Commun. 330:286-292. 110.Smith, G. E., M. D. Summers, and M. J. Fraser. 1983. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell Biol. 3:2156-2165. 111.Stadler, K., V. Masignani, M. Eickmann, S. Becker, S. Abrignani, H. D. Klenk, and R. Rappuoli. 2003. SARS--beginning to understand a new virus. Nat. Rev. Microbiol. 1:209-218. 112.Sui, J., W. Li, A. Murakami, A. Tamin, L. J. Matthews, S. K. Wong, M. J. Moore, A. S. Tallarico, M. Olurinde, H. Choe, L. J. Anderson, W. J. Bellini, M. Farzan, and W. A. Marasco. 2004. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl. Acad. Sci. USA 101:2536-2541. 113.Surjit, M., B. Liu, V. T. Chow, and S. K. Lal. 2006. The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J. Biol. Chem. 281:10669-10681. 114.Surjit, M., B. Liu, S. Jameel, V. T. Chow, and S. K. Lal. 2004. The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors. Biochem. J. 383:13-18. 115.Takeshita, A., Y. Chen, A. Watanabe, S. Kitano, and S. Hanazawa. 1995. TGF-beta induces expression of monocyte chemoattractant JE/monocyte chemoattractant protein 1 via transcriptional factor AP-1 induced by protein kinase in osteoblastic cells. J. Immunol. 155:419-426. 116.Tan, Y. J., B. C. Fielding, P. Y. Goh, S. Shen, T. H. Tan, S. G. Lim, and W. Hong. 2004. Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J. Virol. 78:14043-14047. 117.Tan, Y. J., E. Teng, S. Shen, T. H. Tan, P. Y. Goh, B. C. Fielding, E. E. Ooi, H. C. Tan, S. G. Lim, and W. Hong. 2004. A novel severe acute respiratory syndrome coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis. J. Virol. 78:6723-6734. 118.Taylor, A. W., and R. F. Mortensen. 1991. Effect of alpha-2-macroglobulin on cytokine-mediated human C-reactive protein production. Inflammation 15:61-70. 119.Thiel, V., K. A. Ivanov, A. Putics, T. Hertzig, B. Schelle, S. Bayer, B. Weissbrich, E. J. Snijder, H. Rabenau, H. W. Doerr, A. E. Gorbalenya, and J. Ziebuhr. 2003. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84:2305-2315. 120.Tipnis, S. R., N. M. Hooper, R. Hyde, E. Karran, G. Christie, and A. J. Turner. 2000. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 275:33238-33243. 121.To, K. F., and A. W. Lo. 2004. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J. Pathol. 203:740-743. 122.To, K. F., J. H. Tong, P. K. Chan, F. W. Au, S. S. Chim, K. C. Chan, J. L. Cheung, E. Y. Liu, G. M. Tse, A. W. Lo, Y. M. Lo, and H. K. Ng. 2004. Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in-situ hybridization study of fatal cases. J. Pathol. 202:157-163. 123.Tsai, C. W., S. C. Chang, and M. F. Chang. 1999. A 12-amino acid stretch in the hypervariable region of the spike protein S1 subunit is critical for cell fusion activity of mouse hepatitis virus. J. Biol. Chem. 274:26085-26090. 124.Ueda, A., Y. Ishigatsubo, T. Okubo, and T. Yoshimura. 1997. Transcriptional regulation of the human monocyte chemoattractant protein-1 gene. Cooperation of two NF-kappaB sites and NF-kappaB/Rel subunit specificity. J. Biol. Chem. 272:31092-31099. 125.Vecchi, A., L. Massimiliano, S. Ramponi, W. Luini, S. Bernasconi, R. Bonecchi, P. Allavena, M. Parmentier, A. Mantovani, and S. Sozzani. 1999. Differential responsiveness to constitutive vs. inducible chemokines of immature and mature mouse dendritic cells. J. Leukoc. Biol. 66:489-494. 126.Vennema, H., G. J. Godeke, J. W. Rossen, W. F. Voorhout, M. C. Horzinek, D. J. Opstelten, and P. J. Rottier. 1996. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 15:2020-2028. 127.Volkman, L. E. 1995. Baculovirus bounty. Science 269:1834. 128.Wang, N., L. Verna, S. Hardy, J. Forsayeth, Y. Zhu, and M. B. Stemerman. 1999. Adenovirus-mediated overexpression of c-Jun and c-Fos induces intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 19:2078-2084. 129.Wang, P., J. Chen, A. Zheng, Y. Nie, X. Shi, W. Wang, G. Wang, M. Luo, H. Liu, L. Tan, X. Song, Z. Wang, X. Yin, X. Qu, X. Wang, T. Qing, M. Ding, and H. Deng. 2004. Expression cloning of functional receptor used by SARS coronavirus. Biochem. Biophys. Res. Commun. 315:439-444. 130.Weiss, S. R., and S. Navas-Martin. 2005. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev. 69:635-664. 131.Wong, S. K., W. Li, M. J. Moore, H. Choe, and M. Farzan. 2004. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 279:3197-3201. 132.Xiao, X., S. Chakraborti, A. S. Dimitrov, K. Gramatikoff, and D. S. Dimitrov. 2003. The SARS-CoV S glycoprotein: expression and functional characterization. Biochem. Biophys. Res. Com | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46693 | - |
| dc.description.abstract | 嚴重急性呼吸道症候群冠狀病毒 (severe acute respiratory syndrome associated coronavirus, SARS-CoV),是2002年末至2003年之間在全世界造成廣泛感染並有 9.6% 致死率的嚴重急性呼吸道症候群 (severe acute respiratory syndrome, SARS) 的病原體,會引起患者肺部浸潤、纖維化等非典型肺炎症狀。血管收縮素轉化酵素2 (angiotensin-converting enzyme 2, ACE2),被進一步證實為SARS-CoV感染宿主細胞的重要細胞表面受器,但是ACE2是否會參與在將病毒感染的訊息由細胞表面傳遞到細胞核中,進一步影響到宿主細胞中基因的表現,這些資訊到現在仍不清楚,而且SARS-CoV的致病機制,也還有待進一步的釐清。在本研究中,首先進行SARS-CoV的類病毒顆粒 (virus-like particles, VLPs) 系統的建構。利用會表現SARS-CoV結構蛋白質S、M、E的重組桿狀病毒 (baculovirus) 共同感染昆蟲細胞Sf9,收取細胞培養液進行蔗糖梯度離心,即可收集到純化過的SARS-CoV VLPs,並且純化SARS-CoV spike蛋白質,以模擬病毒感染的生理狀態。為了了解病毒的致病機轉,將SARS-CoV的目標細胞肺癌肺泡上皮細胞A549和SARS-CoV VLPs進行培養後,利用Affymetrix寡核苷酸微陣列系統,大規模地觀察有那些宿主細胞基因的表現受到影響。結果發現這些基因大都參與免疫反應、細胞凋零、細胞週期等反應中。其中一個受影響的基因為C-C motif ligand 2 (CCL2)。利用反轉錄即時聚合酶連鎖反應更進一步確認在A549細胞或是非洲綠猴腎臟細胞株Vero E6中,SARS-CoV VLPs及病毒的spike蛋白質均會正調控CCL2基因的表現,且由酵素免疫分析法也證實了A549細胞培養液中CCL2蛋白質的表現量增加。利用螢光素酶分析法分析CCL2基因啟動子上順式元件在SARS-CoV VLPs處理下扮演的角色,證實了AP-1的重要性,而且c-Fos與c-Jun的表現量也會增加。AP-1的轉錄活性會受到MAPKs的調控,在SARS-CoV VLPs與spike蛋白質培養下,ERK1/2的磷酸化有顯著的增加,其上游的Ras、Raf也參與在CCL2表現正調控的訊息路徑中,而不是透過IkappaBalpha-NFkappaB的路徑。當細胞預先處理專一性辨認SARS-CoV細胞受器ACE2的抗體時,會抑制SARS-CoV VLPs或spike蛋白質引起的CCL2表現量增加與ERK1/2磷酸化,而且利用抑制劑實驗證明casein kinase II會將ACE2胺基酸Ser-787位置進行磷酸化,此一磷酸化對於下游的訊息傳遞是重要的。所以本實驗結果指出,當SARS-CoV感染時,病毒spike蛋白質和其受器ACE2的交互作用,會促使ACE2磷酸化,而引起ACE2訊息路徑的活化,進而活化Ras-ERK-AP-1路徑,導致下游CCL2表現量的增加,可能是導致SARS病人肺部纖維化的原因之一。 | zh_TW |
| dc.description.abstract | Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) was identified to be the causative agent of SARS, an atypical pneumonia that occurred during late 2002 and the first half of 2003. SARS-CoV infected more than 8,000 people, with a worldwide mortality rate of 9.6%. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for SARS-CoV. It is not clear whether ACE2 conveys signals from the cell surface to the nucleus and regulates expression of cellular genes upon SARS-CoV infection. To understand the pathogenesis of SARS-CoV, SARS-CoV virus-like particles (SARS-CoV VLPs) were first generated in this study by co-infecting Sf9 cells with recombinant baculoviruses expressing the viral structural proteins S, E, and M. SARS-CoV VLPs secreted into the culture medium were harvested and used to mimic the infection of SARS-CoV following a sucrose gradient centrifugation. In addition, the SARS-CoV spike protein was purified with an Ni2+ SepharoseTM purification system. Human type II pneumocyte A549 cells were incubated with SARS-CoV VLPs and gene expression profiles were examined by Affymetrix oligonucleotide microarray system. The analysis revealed differentially expressed genes that are involved in humoral immune responses, apoptosis, and cell cycle. The up-regulation of the fibrosis-assocaited chemokine (c-c motif) ligand 2 (ccl2) mRNA in SARS-CoV VLPs-treated and the spike protein-treated A549 cells and Vero E6 cells was confirmed by real-time reverse transcription polymerase chain reaction. In addition, enzyme-linked immunosorbent assay showed elevated levels of CCL2 protein were increased in culture media of both the SARS-CoV VLPs-treated and the spike protein-pretreated A549 cells. Luciferase reporter assay demonstrated a role of activation protein 1 (AP-1) in trans-activating CCL2 promoter upon pretreatment with SARS-CoV VLPs. Western blot analysis further demonstrated SARS-CoV VLP-induced up-regulation of both c-Fos and c-Jun, which constitute AP-1. The up-regulation of CCL2 in A549 cells was mainly mediated by extracellular signal-regulated kinase 1 and 2 (ERK1/2) and AP-1, but not IkappaBalpha-NFkappaB signaling pathway. Further studies demonstrated that Ras and Raf upstream of the ERK1/2 signaling pathway were involved in the up-regulation of CCL2. In addition, the anti-ACE2 antibodies diminished the SARS-CoV VLP- and spike protein-induced phosphorylation of ERK1/2 and the up-regulation of CCL2. An inhibitor assay indicated that ACE2 receptor was activated by casein kinase II–mediated phosphorylation at Ser-787 in cells pretreated with SARS-CoV VLPs. These data suggest that upon infection of SARS-CoV, ACE2 signaling pathway is activated through the interaction between the viral spike protein and the ACE2 receptor. The ACE2 signaling then activates Ras-ERK-AP-1 pathway and results in an up-regulation of the downstream gene ccl2, leading to pulmonary fibrosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:23:40Z (GMT). No. of bitstreams: 1 ntu-99-F90442001-1.pdf: 3240649 bytes, checksum: a3538e37d6a9adfd07d5a6f107b572ca (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要 …………………………………………………I
英文摘要 …………………………………………………III 縮寫表 ……………………………………………………VI 緒論 ………………………………………………………1 材料來源 …………………………………………………19 實驗方法 …………………………………………………26 實驗結果 …………………………………………………50 討論 ………………………………………………………60 圖表 ………………………………………………………65 參考文獻 …………………………………………………108 | |
| dc.language.iso | zh-TW | |
| dc.subject | 嚴重急性呼吸道症候群冠狀病毒 | zh_TW |
| dc.subject | 棘蛋白質 | zh_TW |
| dc.subject | ERK1/2 | en |
| dc.subject | SARS | en |
| dc.subject | ACE2 | en |
| dc.subject | CCL2 | en |
| dc.title | 嚴重急性呼吸道症候群冠狀病毒棘蛋白質透過其受器ACE2訊息傳遞正調控細胞激素CCL2基因之分子機制 | zh_TW |
| dc.title | Up-regulation of the chemokine (C-C motif) ligand 2 via a SARS-CoV spike-ACE2 signaling pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 嚴仲陽,張玉生,張智芬,施信如,伍安怡 | |
| dc.subject.keyword | 嚴重急性呼吸道症候群冠狀病毒,棘蛋白質, | zh_TW |
| dc.subject.keyword | SARS,ACE2,CCL2,ERK1/2, | en |
| dc.relation.page | 128 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
