請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46686完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙本秀 | |
| dc.contributor.author | Wei-Jen Chang | en |
| dc.contributor.author | 張維仁 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:23:15Z | - |
| dc.date.available | 2011-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-17 | |
| dc.identifier.citation | Chapter 5 References
1. Geiger, B., J.P. Spatz, and A.D. Bershadsky, Environmental sensing through focal adhesions. Nature Reviews Molecular Cell Biology, 2009. 10(1): p. 21-33. 2. Vogel, V. and M. Sheetz, Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology, 2006. 7(4): p. 265-275. 3. Dalby, M.J., et al., The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 2007. 6(12): p. 997-1003. 4. Leong, K.W. and K. Kulangara, Substrate topography shapes cell function. Soft Matter, 2009. 5(21): p. 4072-4076. 5. Martinez, E., et al., Stem cell differentiation by functionalized micro- and nanostructured surfaces. Nanomedicine, 2009. 4(1): p. 65-82. 6. Donahue, H.J. and J.Y. Lim, Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Engineering, 2007. 13(8): p. 1879-1891. 7. Schwarz, U.S. and I.B. Bischofs, Cell organization in soft media due to active mechanosensing. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(16): p. 9274-9279. 8. West, J.L. and S. Nemir, Synthetic Materials in the Study of Cell Response to Substrate Rigidity. Annals of Biomedical Engineering, 2010. 38(1): p. 2-20. 9. Discher, D.E., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-689. 10. Engler, A.J., et al., Extracellular matrix elasticity directs stem cell differentiation. J Musculoskelet Neuronal Interact, 2007. 7(4): p. 335. 11. Hervy, M., Modulation of Cell Structure and Function in Response to Substrate Stiffness and External Forces. Journal of Adhesion Science and Technology, 2010. 24(5): p. 963-973. 12. Wang, Y.L., et al., Substrate rigidity regulates the formation and maintenance of tissues. Biophysical Journal, 2006. 90(6): p. 2213-2220. 13. Lo, C.M., et al., Cell movement is guided by the rigidity of the substrate. Biophysical Journal, 2000. 79(1): p. 144-152. 14. Post, M.J., et al., Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. American Journal of Physiology-Cell Physiology, 2009. 296(6): p. C1338-C1345. 15. Discher, D.E., et al., Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. Journal of Cell Biology, 2004. 166(6): p. 877-887. 16. Hsiong, S.X., et al., Differentiation stage alters matrix control of stem cells (vol 85A, pg 145, 2008). Journal of Biomedical Materials Research Part A, 2008. 87A(1): p. 282-282. 17. Kidoaki, S. and T. Kawano, Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels. Biomaterials, 2011. 32(11): p. 2725-2733. 18. Brown, R.A., E. Hadjipanayi, and V. Mudera, Guiding Cell Migration in 3D: A Collagen Matrix with Graded Directional Stiffness. Cell Motility and the Cytoskeleton, 2009. 66(3): p. 121-128. 19. Ladoux, B., et al., Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(20): p. 8281-8286. 20. Fu, J.P., et al., Mechanical regulation of cell function with geometrically modulated elastomeric substrates (vol 7, pg 733, 2010). Nature Methods, 2011. 8(2): p. 184-184. 21. Yamada, K.M., et al., Taking cell-matrix adhesions to the third dimension. Science, 2001. 294(5547): p. 1708-1712. 22. Tan, L.P., et al., Thickness sensing of hMSCs on collagen gel directs stem cell fate. Biochemical and Biophysical Research Communications, 2010. 401(2): p. 287-292. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46686 | - |
| dc.description.abstract | 本論文的目的為利用複合式平台來研究細胞型態以及行為。複合結構式平台是由兩層不同楊式模數的材料所組成,使用材料包含膠原蛋白以及PDMS,上層為硬度較小的膠原蛋白,下層為硬度較大且有圓柱陣列結構的PDMS, 藉由下層圓柱狀結構影響上部較軟層膠原蛋白的機械性質,期使培養在膠原蛋白上方之細胞感受到下方基質幾何的不同而有所改變。首先,使用有限元素法分析去模擬可能改變的機械性質以及使用原子力顯微鏡去測量真實的有效軟硬度模數。利用此系統,本論文研究內容包括:複合結構平台上層的膠原蛋白厚度及圓柱間距離對間葉幹細胞遷移及型態的影響、間葉幹細胞在複合結構平台之三維環境中之反應、以及比較分化及未分化細胞(前十字韌帶纖維母細胞及間葉幹細胞)在複合結構平台上的遷移及型態。本研究發現細胞會往圓柱上方較薄層的膠原蛋白表面移動,這說明了細胞可感受到複合式平台中的內部結構變化,並且不同種類的細胞對於感受複合式平台中的內部結構的程度有所不同。 | zh_TW |
| dc.description.abstract | The thesis used the laboratory-designed composite substrate microstructure to study the cell morphology and behavior.
This composite substrate device offers a homogeneous chemical property of 2D and 3D environment, and the inner geometric and microstructural design can be easy and precious to manipulate. First, we used the finite element method to simulate the mechanical property of composite substrate and atomic force microscopy(AFM) to measure the effective modulus of composite substrate. There are four research topics in the thesis, including effect of collagen thickness and spacing distance between micropillars on human mesenchymal stem cells (hMSCs) migration and morphology, and effect of three-dimension environment on hMSCs migration and morphology, and effect of composite substrate microstructure on anterior cruciate ligament cells (ACL) migration and morphology. In our study, most cells migrated toward the composite thin gel on the micropillars, and this implies cells seem like to have potential to sense the underlying structure of our composite substrate. In addition, different cell types have different sensitivity for the underlying structure of our composite substrate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:23:15Z (GMT). No. of bitstreams: 1 ntu-100-R98548039-1.pdf: 1052475 bytes, checksum: 7a5edcdc68fef8262e0e6b1d8f827d97 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES ix Chapter 1 Introduction 1 Chapter 2 Experiment Processes and Methods 6 2.1 Finite Element Method Analysis 6 2.2 Composite Substrate Preparation 7 2.3 Effective Modulus Measurement 8 2.4 Cell Culture 8 2.5 Cell Behavior Measurement 9 2.6 Statistical Analysis 9 Chapter 3 Results 12 3.1 The property of composite microstructural substrate 12 3.2 hMSCs cultured on composite substrate with different thick thickness of collagen gels 12 3.3 hMSCs cultured on composite substrate with different spacing distance between micropillars 13 3.4 hMSCs cultured in the collagen gels to simulate a 3D environment 13 3.5 ACL fibroblasts cultured on the composite substrate with total thickness of 400um 14 Chapter 4 Discussion 37 Chapter 5 References 41 LIST OF FIGURES Fig. 1(A) Microstructure of posts with 300μm diameter, 60μm height, and 300μm spacing (edge to edge). The collagen gel (yellow) is 100μm in total thickness. (B) The collagen solution with hMSCs was coated on the second layer. 11 Fig. 2(A) Surface of collagen gel by confocal microscopy scanning. (B) Scanning electron micrograph of microstructure of posts with 300μm diameter, 60μm height, and 300μm spacing (edge to edge). 15 Fig. 3(A) Apparent stiffness is plotted as a function of total thickness of collagen gels with constant spacing distance of 300um, as calculated by FEM analysis. 16 Fig. 3(B) Apparent stiffness is plotted as a function of total thickness of collagen gels with constant spacing distance of 600um, as calculated by FEM analysis. 16 Fig. 3(C) Apparent stiffness is plotted as a function of total thickness of collagen gels with constant spacing distance of 900um, as calculated by FEM analysis. 17 Fig. 4Effective modulus of collagen gel in total thickness of 100, 200, 400um were measured by AFM. (*p<0.05 vs. composite in, #p<0.05 vs. 100um, ##p<0.05 vs. 200um) 18 Fig. 5(A) Cell density of hMSCs was measured after cell seeding on the composite of substrate (2D). (B) Cell density of hMSCs was measured after cell seeding in the composite of substrate (3D). 19 Fig. 5(C) Cell morphology of hMSCs after cell seeding on the composite substrate (left) and in the composite substrate (right). 19 Fig. 6(A)hMSCs morphology on the composite substrate and control on the total thickness of 100um group. 20 Fig. 6(B) hMSCs morphology on the composite substrate and control on the total thickness of 200um group. 21 Fig. 6(C) hMSCs morphology on the composite substrate and control on the total thickness of 400um group. 22 Fig. 7(A) Spreading area of hMSCs cultured on collagen gels with 100, 200 400um in total thickness in day 1. (#p<0.05 vs. the composite thin, &p<0.05 vs. the composite thick, *p<0.05vs. 100um) 23 Fig. 7(B) Spreading area of hMSCs cultured on collagen gels with 100, 200 400um in total thickness in day 2. (#p<0.05 vs. the composite thin, &p<0.05 vs. the composite thick, *p<0.05vs. 100um, **p<0.05vs. 200um.) 23 Fig. 7(C) Spreading area of hMSCs cultured on collagen gels with 100, 200 400um in total thickness in day 3. (#p<0.05 vs. the composite thin, &p<0.05 vs. the composite thick, $p<0.05 vs. the thin group, *p<0.05vs. 100um, **p<0.05vs. 200um.) 24 Fig. 8(A) Cell density of hMSCs on the composite substrate with 100, 200, 400um in total thickness in day1. (*p<0.05 vs. the composite thin) 25 Fig. 8(B) Cell density of hMSCs on the composite substrate with 100, 200, 400um in total thickness in day2. (*p<0.05 vs. the composite thin) 25 Fig. 8(C) Cell density of hMSCs on the composite substrate with 100, 200, 400um in total thickness in day3. (*p<0.05 vs. the composite thin) 26 Fig. 9(A) The temporal change in cell density on the total thickness of 100um group in 3 days. (*p<0.05 vs. the composite thin) 27 Fig. 9(B) The temporal change in cell density on the total thickness of 200um group in 3 days. (*p<0.05 vs. the composite thin) 27 Fig. 9(C) The temporal change in cell density on the total thickness of 400um group in 3 days. (*p<0.05 vs. the composite thin) 28 Fig. 10(A) Cell density of hMSCs on the composite substrate with the spacing distance of 300, 600, 900um in day1. 29 Fig. 10(B) Cell density of hMSCs on the composite substrate with the spacing distance of 300, 600, 900um in day2. 29 Fig. 10(C) Cell density of hMSCs on the composite substrate with the spacing distance of 300, 600, 900um in day3. (*p<0.05 vs. the composite thin, #p<0.05 vs. the control thick) 30 Fig. 11(A) Images of hMSCs seeded in the collagen gel of composite substrate and control on day3. 31 Fig. 11(B) Spreading area of hMSCs in the collagen gel of composite substrate and control. (*p<0.05 vs. the day1) 31 Fig. 11(C) Cell density of hMSCs in the composite substrate. (*p<0.05 vs. the composite thin, #p<0.05 vs. the day1) 32 Fig. 12(A) ACL fibroblasts morphology on the composite substrate and control. 33 Fig. 12(B) Spreading area of ACLs on composite substrate. (*p<0.05 vs. the composite thin, **p<0.05 vs. the composite thick, #p<0.05 vs. day1, ##p<0.05 vs. day2, $p<0.05 vs. the thin group) 34 Fig. 12(C) Cell density of ACL fibroblasts on the composite substrate. (*p<0.05 vs. the composite thin, **p<0.05 vs. the composite thick, #p<0.05 vs. day1, ##p<0.05 vs. day2, $p<0.05 vs. the thin group) 34 Fig. 13(A) Normalized cell density of hMSCs and ACL fibroblast in day1. ( *p<0.05 vs. the composite thin, **p<0.05 vs. the composite thick, $p<0.05 vs. the thin group) 35 Fig. 13(B) Normalized cell density of hMSCs and ACL fibroblast in day2. (*p<0.05 vs. the composite thin, #p<0.05 vs. hMSCs) 35 Fig. 13(C) Normalized cell density of hMSCs and ACL fibroblast in day 3. ( *p<0.05 vs. the composite thin, , #p<0.05 vs. hMSCs) 36 LIST OF TABLES Table 1 The list of thickness at each different thickness groups. (unit:um) 10 | |
| dc.language.iso | en | |
| dc.subject | 軟硬度 | zh_TW |
| dc.subject | 細胞爬行 | zh_TW |
| dc.subject | Stiffness | en |
| dc.subject | Cell migration | en |
| dc.title | 複合式微結構平台引導細胞遷移 | zh_TW |
| dc.title | Composite Microstructural Substrate Induces Cell Migration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭柏齡,林峰輝 | |
| dc.subject.keyword | 細胞爬行,軟硬度, | zh_TW |
| dc.subject.keyword | Cell migration,Stiffness, | en |
| dc.relation.page | 42 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
