請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46679完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅(Chih-I Wu) | |
| dc.contributor.author | Shu-han Hsu | en |
| dc.contributor.author | 許舒涵 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:22:48Z | - |
| dc.date.available | 2015-07-21 | |
| dc.date.copyright | 2010-07-21 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-19 | |
| dc.identifier.citation | 1. Li, Z.R. and H. Meng, Organic light-emitting materials and devices. 2007, Boca Raton: CRC/Taylor & Francis.
2. Kallmann, H. and M. Pope, Positive Hole Injection into Organic Crystals. The Journal of Chemical Physics, 1960. 32(1): p. 300-301. 3. Kallmann, H. and M. Pope, Bulk Conductivity in Organic Crystals. Nature, 1960. 186(4718): p. 31-33. 4. Mark, P. and W. Helfrich, Space-Charge-Limited Currents in Organic Crystals. Journal of Applied Physics, 1962. 33(1): p. 205-215. 5. Sano, M., M. Pope, and H. Kallmann, Electroluminescence and Band Gap in Anthracene. The Journal of Chemical Physics, 1965. 43(8): p. 2920-2921. 6. Pope, M., H.P. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals. The Journal of Chemical Physics, 1963. 38(8): p. 2042-2043. 7. Tang, C.W. and S.A. VanSlyke, Organic electroluminescent diodes. Applied Physics Letters, 1987. 51(12): p. 913-915. 8. Shaw, J.M. and P.F. Seidler, Organic electronics: introduction. IBM J. Res. Dev., 2001. 45(1): p. 3-9. 9. Forrest, S.R., The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004. 428(6986): p. 911-918. 10. William, A.M., Engineered films for display technologies. 2004. 14(1): p. 4-10. 11. Brutting, W., S. Berleb, and A.G. Muckl, Device physics of organic light-emitting diodes based on molecular materials. Organic Electronics, 2001. 2(1): p. 1-36. 12. Yamanaka, M. and J. Kudo, Characterization of tris (8-hydroxyquinoline) aluminum (Alq3) by energy-filtering transmission electron microscopy. Applied Physics Letters, 2003. 83(24): p. 5044-5046. 13. Berleb, S., W. Brutting, and G. Paasch, Interfacial charges and electric field distribution in organic hetero-layer light-emitting devices. Organic Electronics, 2000. 1(1): p. 41-47. 14. Chan, J., et al. Electrical and Optical Simulation of Tris (8-hydroxyquinoline) Aluminium-Based Microcavity Organic Light Emitting Diode (MOLED). in Optoelectronic and Microelectronic Materials and Devices, 2004 Conference on. 2004. 15. Rajagopal, A., C.I. Wu, and A. Kahn, Energy level offset at organic semiconductor heterojunctions. Journal of Applied Physics, 1998. 83(5): p. 2649-2655. 16. Van Slyke, S.A., C.H. Chen, and C.W. Tang, Organic electroluminescent devices with improved stability. Applied Physics Letters, 1996. 69(15): p. 2160-2162. 17. Lin, L.B., et al., Hole injection and transport in tris-(8-hydroxyquinolinato) aluminum. Applied Physics Letters, 1997. 70(15): p. 2052-2054. 18. Papadimitrakopoulos, F., Z. Xian-Man, and K.A. Higginson, Chemical and morphological stability of aluminum tris(8-hydroxyquinoline) (Alq3): effects in light-emitting devices. Selected Topics in Quantum Electronics, IEEE Journal of, 1998. 4(1): p. 49-57. 19. Kroto, H.W., et al., C60: Buckminsterfullerene. Nature, 1985. 318(6042): p. 162-163. 20. Rosoff, M., Nano-surface chemistry. 2002, New York: Marcel Dekker. 21. Taylor, R. and D.R.M. Walton, The chemistry of fullerenes. Nature, 1993. 363(6431): p. 685-693. 22. Langa, F. and J.-F. Nierengarten, Fullerenes : principles and applications. RSC nanoscience & nanotechnology. 2007, Cambridge: Royal Society of Chemistry. 23. Pandey, A. and J.-M. Nunzi, Rubrene/Fullerene Heterostructures with a Half-Gap Electroluminescence Threshold and Large Photovoltage. Advanced Materials, 2007. 19(21): p. 3613-3617. 24. Soga, T., Nanostructured materials for solar energy conversion. 2006, Boston: Elsevier. 25. Haddon, R.C., et al., The Fullerenes: Powerful Carbon-Based Electron Acceptors [and Discussion]. Philosophical Transactions: Physical Sciences and Engineering, 1993. 343(1667): p. 53-62. 26. Friedel, B., et al., Effects of Layer Thickness and Annealing of PEDOT:PSS Layers in Organic Photodetectors. Macromolecules, 2009. 42(17): p. 6741-6747. 27. Jonsson, S.K.M., et al., The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synthetic Metals, 2003. 139(1): p. 1-10. 28. Kok, M.M.d., et al., Modification of PEDOT:PSS as hole injection layer in polymer LEDs. physica status solidi (a), 2004. 201(6): p. 1342-1359. 29. Liesa, F., et al., Application of electrochemically produced and oxidized poly(3,4-ethylenedioxythiophene) as anticorrosive additive for paints: Influence of the doping level. Journal of Applied Polymer Science, 2006. 102(2): p. 1592-1599. 30. Stephan, K. and R. Knud, Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). 2005. 15(21): p. 2077-2088. 31. Groenendaal, L., et al., Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Advanced Materials, 2000. 12(7): p. 481-494. 32. Elschner, A., et al., PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synthetic Metals, 2000. 111-112: p. 139-143. 33. Chen, S.-A., H.-H. Lu, and C.-W. Huang, Polyfluorenes for Device Applications, in Polyfluorenes. 2008. p. 49-84. 34. From Clevios ™PVP AI4083 Product Information 2010. 35. Wu, I.W., et al., Correlation of energy band alignment and turn-on voltage in organic light emitting diodes. Applied Physics Letters. 96(1): p. 3. 36. Li, W., et al., Maximizing Alq3 OLED Internal and External Efficiencies: Charge Balanced Device Structure and Color Conversion Outcoupling Lenses. J. Display Technol., 2006. 2(2): p. 143-152. 37. Koch, N., Organic Electronic Devices and Their Functional Interfaces. ChemPhysChem, 2007. 8(10): p. 1438-1455. 38. Salaneck, W.R., Conjugated polymer and molecular interfaces : science and technology for photonic and optoelectronic applications. 2002, New York: Marcel Dekker. 39. Dakin, J.P. and R.G.W. Brown, Handbook of Optoelectronics (Two-Volume Set). 2006: Taylor & Francis, Inc. 40. Wong, F.L., et al., Performance enhancement of organic light-emitting diode by heat treatment. Journal of Crystal Growth, 2006. 288(1): p. 110-114. 41. Jayatissa, A.H. and A.K. Dutta. C60 thin films for optical fiber coating applications. 2004: SPIE. 42. Chen, G.-T., et al., Effects of Thermal Annealing on Performance of Organic Light-Emitting Diodes. Journal of The Electrochemical Society, 2007. 154(5): p. J159-J162. 43. Katz, E.A., et al., Do structural defects affect semiconducting properties of fullerene thin films? Physica B: Condensed Matter, 1999. 273-274: p. 934-937. 44. Pevzner, B., A.F. Hebard, and M.S. Dresselhaus, Role of molecular oxygen and other impurities in the electrical transportand dielectric properties of C60 films. Physical Review B, 1997. 55(24): p. 16439. 45. Matsushima, T., M. Yahiro, and C. Adachi, Estimation of electron traps in carbon-60 field-effect transistors by a thermally stimulated current technique. Applied Physics Letters, 2007. 91(10): p. 103505. 46. Lane, P.A., et al., Elimination of hole injection barriers by conducting polymer anodes in polyfluorene light-emitting diodes. Physical Review B, 2006. 74(12): p. 125320. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46679 | - |
| dc.description.abstract | 本論文主要在探討碳六十(C60)在有機發光二體(OLED)的應用。首先研究碳六十對有機發光二體電流密度、亮度與效率的影響,接著討論碳六十降低驅動電壓(turn-on voltage) 的原因。同時經由簡單的製程修改,例如退火處理或是增加電洞注入層PEDOT:PSS,探討是否能進一步改善碳六十元件的性能。最後發現製備碳六十元件的最佳條件是採用ITO/PEDOT:PSS/NPB(800Å)/Alq3(400Å)/C60(400Å)/LiF(10Å)/Al(1000Å)的元件結構。 | zh_TW |
| dc.description.abstract | The application of C60 in organic light emitting devices (OLED) is investigated in this thesis, with a focus on the effects of C60 on current density, luminescence and efficiency. Next, the influence of C60 on turn-on voltage will also be studied. Modifications to the C60 devices that can be integrated into simple fabrication processes, such as annealing or the addition of a PEDOT:PSS layer, will also be investigated for the improvement of C60 devices. It is concluded that the best condition for C60 devices in this study is to use an ITO/PEDOT:PSS/NPB(800Å)/Alq3(400Å)/C60(400Å)/LiF(10Å)/Al(1000Å) structure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:22:48Z (GMT). No. of bitstreams: 1 ntu-99-R97941006-1.pdf: 549886 bytes, checksum: d6955c1bb5756f6fa6e9bf61b2955fb4 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract iv Chapter 1 Introduction & Research Objectives 1 1.1 Organic Light-Emitting Diodes (OLED) Overview 1 1.2 Basic Structure and Operation Principle 2 1.3 Basic Properties of OLED Materials 3 1.4 C60 Properties 4 1.5 Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT: PSS) Properties 5 1.6 OLED Turn-on voltage 7 1.7 OLED Optimization 8 1.8 Research Objectives 9 Chapter 2 Experimental Methods 10 2.1 Devices 10 2.2 Fabrication 13 2.2-1 Materials Preparation 13 2.2-2 Sample Preparation/Cleaning 14 2.2-3 Thermal Evaporation 15 2.3 Characterization 16 2.3-1 I-V Measurement 16 2.3-2 Luminescence 17 Chapter 3 Experimental Results & Discussion 18 3.1 Replacement of Alq3(800Å) Layer with Alq3(x Å)/C60(y Å), where x+y= 800 18 3.1-1 Unannealed Structure Comparisons 18 3.1-2 Annealed Structure Comparisons 21 3.2 Effect of PEDOT:PSS in Devices with Replacement of Alq3(800Å)layer with Alq3(x Å)/C60(y Å), where x+y= 800 24 3.2-1 Comparison of Standard Devices with and without PEDOT:PSS 24 3.2-2 Replacement of Alq3(800Å) Layer Devices using Alq3(x Å)/C60(y Å), where x+y= 800 (With PEDOT:PSS) 25 3.3 C60 doping Comparison, Alq3:C60(800 Å, x wt%), where x=1, 5, or 10 26 Chapter 4 Conclusions 38 References 40 | |
| dc.language.iso | en | |
| dc.subject | 驅動電壓 | zh_TW |
| dc.subject | 有機發光二極體 | zh_TW |
| dc.subject | 碳六十 | zh_TW |
| dc.subject | 退火 | zh_TW |
| dc.subject | PEDOT:PSS | zh_TW |
| dc.subject | 電流密度 | zh_TW |
| dc.subject | 亮度 | zh_TW |
| dc.subject | 效率 | zh_TW |
| dc.subject | Turn-on voltage | en |
| dc.subject | Organic light emitting diodes | en |
| dc.subject | C60 | en |
| dc.subject | Annealing | en |
| dc.subject | PEDOT:PSS | en |
| dc.subject | Current Density | en |
| dc.subject | Luminescence | en |
| dc.subject | Efficiency | en |
| dc.title | 碳六十對有機發光二極體的效應 | zh_TW |
| dc.title | The Effects of C60 in Organic Light Emitting Diodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳育任(Yuh-Renn Wu),陳奕君(I-Chun Cheng) | |
| dc.subject.keyword | 有機發光二極體,碳六十,退火,PEDOT:PSS,電流密度,亮度,效率,驅動電壓, | zh_TW |
| dc.subject.keyword | Organic light emitting diodes,C60,Annealing,PEDOT:PSS,Current Density,Luminescence,Efficiency,Turn-on voltage, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 537 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
