Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46665
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱文英(Wen-Yen Chiu)
dc.contributor.authorChung-Yang Chuangen
dc.contributor.author莊仲揚zh_TW
dc.date.accessioned2021-06-15T05:21:54Z-
dc.date.available2010-07-27
dc.date.copyright2010-07-27
dc.date.issued2010
dc.date.submitted2010-07-19
dc.identifier.citationChapter 2
1.Gil E S, Hudson S M. Prog Polym Sci 2004, 29, 1173-1222.
2.Okano T, editor. Biorelated polymers and gels. San Diago, CA: Academic Press; 1998.
3.Kikuchi A, Okano T. Prog Polym Sci 2002, 27, 1165-1193.
4.Hoffman AS, et al. J Biomed Mater Res 2000, 52, 577-586.
5.Jeong B, Gutowska A. Trends Biotechnol 2002, 20, 305-311.
6.Qiu Y, Park K. Adv Drug Deliv Rev 2001, 53, 321-339.
7.Chilkoti A, Dreher MR, Meyer DE, Raucher D. Adv Drug Deliv Rev 2002, 54, 613-630.
8.Schild HG. Prog Polym Sci 1992,17, 163-249.
9.Aoyagi T, Ebara M, Sakai K, Sakurai Y, Okano T. J Biomater Sci, Polym Ed 2000, 1, 101-110.
10.Aoki T, Muramatsu M, Torii T, Sanui K, Ogata N. Macromolecules 2001, 34, 3118-3119.
11.Gan LH, Gan YY, Deen GR. Macromolecules 2000, 33, 7893-7897.
12.Gan LH, Roshan Deen G, Loh XJ, Gan YY. Polymer 2001, 42, 65-69.
13.Annaka M, Tanaka C, Nakahira T, Sugiyama M, Aoyagi T, Okano T. Macromolecules 2002, 35, 8173-8179.
14.Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T. Nature 1995, 374, 240-242.
15.Matsukata M, Aoki T, Sanui K, Ogata N, Kikuchi A, Sakurai Y, Okano T. Bioconjug Chem 1996, 7, 96-101.
16.Takei YG, Aoki T, Sanui K, Ogata N, Sakurai Y, Okano T. Macromolecules 1994, 27, 6163-6166.
17.Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, Okano T. Macromolecules 1998, 31, 6099-6105.
18.Chen G, Hoffman AS. Nature 1995, 373, 49-52.
19.Zhang Z, Khan A. Macromolecules 1995, 28, 3807-3812.
20.Bromberg LE, Ron ES. Adv Drug Deliv Rev 1998, 31, 197-221.
21.Alexandridis P, Holzwarth JF, Hatton TA. Macromolecules 1994, 27, 2414-2425.
22.Glatter O, et al. Macromolecules 1994, 27, 6046-6054.
23.Kuijpers AJ, Engbers GHM, Feijen J, De Smedt SC, Meyvis TKL, Demeester J, Krijgsveld J, Zaat SAJ, Dankert J. Macromolecules1999, 32, 3325-3333.
24.Deming TJ. Nature 1997, 390, 386-389.
25.Nowak AP, Breedveld V, Pakstls L, Ozbas B, Plne DJ, Pochan D, Deming TJ. Nature 2002, 417, 424-428.
26.Kopecek J. Nature 2002, 417, 388-391.
27.Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA. Science 1998, 281, 389-392.
28.Philippova OE, Hourdet D, Audebert R, Khokhlov AR. Macromolecules 1997, 30, 8278-8285.
29.Torres-Lugo M, Peppas NA. Macromolecules 1999, 32, 6646-6651.
30.Tonge SR, Tighe BJ. Adv Drug Deliv Rev 2001, 53, 109-122.
31.Murthy N, Robichaud JR, Tirrell DA, Stayton PS, Hoffman AS. J Control Release 1999, 61, 137-143.
32.Lee AS, Butun V, Vamvakaki M, Armes SP, Pople JA, Gast AP. Macromolecules 2002, 35, 8540-8551.
33.Goh y J, Lohmeijer BGG, Varshney SK, Decamps B, Leroy E, Bo ileau S, Schubert US. Macromolecules 2002, 35, 9748-9755.
34.Sutton RC, Thai L, Hewitt JM, Voycheckand CL, Tan JS. Macromolecules 1988, 21, 2432-2439.
35.Ju HK, Kim SY, Lee YM. Polymer 2001, 42, 6851.
36.Hudson S, Smith C. Chitin and chitosan: the chemistry and technology of their use as structural materials. Heidelberg: Springer; 1998.
37.Ito Y, Ochiai Y, Park YS, Imanishi Y. J Am Chem Soc 1997, 119, 1619-1623.
38.Benns JM, Choi J, Mahato RI, Park J, Kim SW. Bioconjug Chem 2000, 11, 637-645.
39.Eccleston ME, Kuiper M, Gilchrist FM, Slater NKH. J Control Release 2000, 69, 297-307.
40.Irvin DJ, et al. Chem Mater 2001, 13, 1143-1145.
41.Filipcsei G, Feher J, Zrinyi M. J Mol Struct 2000, 554, 109-117.
42.Zrinyi M. Colloid Polym Sci 2000, 278, 98-103.
43.Traitel T, Cohen Y, Kost J. Biomaterials 2000, 21, 1679-1687.
44.You L, Lu F, Li Z, Zhang W, Li F. Macromolecules 2003, 36, 1-4.
45.Gao Z, Lukyanov AN, Singhal A, Torchilin VP. Nano Lett. 2002, 2, 979-982.
46.Langer R, Tirrell DA. Nature 2004, 428, 487-492.
47.Caruso F. Chem. Eur. J. 2000, 6, 413-419.
48.Meier W. Chem. Soc. Rev. 2000, 29, 295-303.
49.Caruso F, Caruso RA, Mohwald H. Science 1998, 282, 1111-1114.
50.Jang, J, Lee K. Chem.Commun. 2002, 1098-1099.
51.Jang J, Ha H. Langmuir 2002, 18, 5613-5618.
52.Cheng DM, Xia HB, Chan HSO. Nanotechnology 2006, 17, 1661-1667.
53.Stewart S, Liu GJ. Chem. Mater. 1999, 11, 1048-1054.
54.Huang H, Remsen EE, Kowalewski T, Wooley KL. J. Am. Chem. Soc. 1999, 121, 3805-3806.
55.Zhang YW, Jiang M, Zhao JX, Wang ZX, Dou HJ, Chen DY. Langmuir 2005, 21, 1531-1538.
56.Donath E, Sukhorukov GB, Caruso F, Davis SA, Mohwald H. Angew. Chem. Int. Ed. 1998, 37, 2202-2205.
57.Hu Y, Ding Y, Ding D, Sun MJ, Zhang LY, Jiang XQ, Yang CZ. Biomacromolecules 2007, 8, 1069-1076.
58.Hu Y, Jiang XQ, Ding Y, Chen Q, Yang CZ. Adv. Mater. 2004,16, 933-937.
59.Ding Y, Hu Y, Jiang XQ, Zhang L, Yang CZ. Angew. Chem. Int. Ed. 2004, 46, 6369-6372.
60.Bajpai AK, Sandeep KS, Smitha B, Sanjana K. Prog Polym Sci 2008, 33, 1088-1118.
61.Peppas NA, Khare AR. Adv Drug Delivery Rev 1993, 11, 1-35.
62.Chandy T, Sharma CP. J Appl Polym Sci 1992, 44, 2145-2156.
63.Kim JH, Kim JY, Lee YM, Kin KY. J Appl Polym Sci 1992, 44, 1823-1828.
64.Khan GM, Zhu JB. J Control Release 1999, 57, 197-203.
65.Einerson NJ, Stevens KR, Kao WJ. Biomaterials 2002, 24, 504-523.
66.Choi HS, Ooya T, Sasaki S, Yui N, Yuichi O, Nakai T. Macromolecules 2003, 36, 9313-9318.
67.Patel H, Raval DA, Madamular D. Ind J Pharma Sci 1997, 59, 153-157.
68.Grinsted RA, Clark K, Koenig JL. Macromolecules 1992, 23, 1235-1241.
69.Bajpai AK, Bajpai J, Shukla S. J Mater Sci: Mater Med 2003, 14, 347-357.
70. Bajpai AK, Bajpai J, Shukla S. J Macro Sci:Pure Appl Chem 2002, 39, 489-508.
71. Bajpai AK, Bhanus S. Colloid Polym Sci 2003, 282, 76-83.
72.Hariharan D, Peppas NA. Polymer 1996, 37, 149-161.
73.Ghandehari H, Kopeckova P, Kopecek J. Biomaterials 1997, 18, 861-872.
74.Akala EO, Kopeckova P, Kopecek J. Biomaterials 1998, 19, 1037-1047.
75.Ganakar CR, Liu F, Bardys M, Kim SW. J Control Release 1999, 59, 287-298.
76.Xie G, Zhang Q, Luo Z, Wu M, Li T. J Appl Polym Sci 2003, 87, 1733-1738.
77.Muzzarelli RAA, Rocchetti R. Carbohydr Polym 1985, 5, 461-472.
78.Knorr D. Food Technol 1984, 38, 85-85.
79.Brine CJ, Austin PR. Comp Biochem Physiol 1981, 69, 283-286.
80.Peniston QP. US patent 1979, 4159932.
81.徐世昌, 國立台灣大學化學工程學研究所博士論文 1999, 110-111.
82.莊仲揚,陳俊男, 化工資訊與商情 2006, 38, 26-29.
83.Sugano M, Fujikawa Y, Hiratsuji Y, Nakashima K, Fukuda N, Hasegawa Y. Amer J Clinical Nutr 1980, 33, 787-793.
84.Muzzarelli RAA,Weckex M, Filippini O, Sigon F. Carbohydr Polym 1989, 11, 293-306.
85.Khan M, Bouet F, Medlemeestre J, Schwing MJ. Transition Met Chem 1996, 21, 231-234.
86.Rorrer GL, Hsien TY, Dogulas Way J. Ind Eng Chem Res 1993, 32, 2170-2178.
87.Kawamura Y, Mitsuhashi M, Tanibe H. Ind Eng Chem Res 1993, 32, 386-391.
88.Rodrigues CA, Laranjeira MCM, De Favere VT, Stadler E. Polymer 1998, 39, 5121-5126.
89.Piron E, Accominotti M, Domard A. Langmuir 1997, 13, 1653-1658.
90.Milot C, McBrien J, Allen S, Guibal E. J Appl Polym Sci 1998, 68, 571-580.
91.Guibal E, Charrier MJ, Saucedo I, Le Cloirec P. Langmuir 1995, 11, 591-598.
92.Guibal E, Milot C, Tobin MJ. Ind Eng Chem Res 1998, 37, 1454-1463.
93.Jumaa M, Muller B.W., International J. Pharmaceutics 1999,183,175-184.
94.Schipper NG, Varum KM, Stengberg P, Ocklind G, Lennernas H, Artursson P. European J Pharm Sci 1999, 8, 335-343.
95.Ganza-Gonzalez A., Anguiano-lgea S.,Otero-Espinar F.J., Blanco Mendez J., European J Pharm Biopharm 1999, 48, 149-155.
96.Miwa A, Ishibe A, Nakano M, Yamahira T, Itai S, Kawahara H. Pharm Res 1998, 15, 1844-1850.
97.Kratz G, Back M, Amander C, Larm O. Scand J Plast Reconstr Surg Hand Surg 1998, 32, 381-386.
98.http://www.unitika.co.jp
99.Elcin YM, Dixit V, Lewin K, Gitnick G. Artificial Organs 1999, 23, 146-152.
100.Kawase M, Michibayashi N, Nakashima N, Yagi K, Mizoguchi T. Bio Pharm Bull 1997, 20, 708-710.
101.Wan AC, Khor E, Wong JM, Hastings GW. Biomaterials 1996,17,1529-1534.
102.林文源, 國立台灣大學食品科學研究所博士論文 1995.
Chapter 4
1. Gao, Z; Lukyanov, A. N.; Singhal, A.; Torchilin, V. P. Nano Lett 2002, 2, 979-982.
2. Langer, R.; Tirrell, D. A. Nature 2004; 428, 487-492.
3. Hu, Y.; Ding, Y.; Ding, D.; Sun, M. J.; Zhang, L. Y.; Jiang, X. Q.; Yang, C. Z. 
Biomacromolecules 2007, 8, 1069-1076.
4. Hu, Y.; Jiang, X. Q.; Ding, Y.; Chen, Q.; Yang, C. Z. Adv Mater 2004, 16, 933-937.
5. Caruso, F. Chem Eur J 2000, 6, 413-419.
6. Meier, W. Chem Soc Rev 2000, 29, 295-303.
7. Caruso, F.; Caruso, R. A.; Mohwald, H. Science 1998, 282, 1111-1114.
8. Berth, G.; Voigt, A.; Dautzenberg, H.; Donath, E.; Mohwald, H. Biomacromolecules
2002, 3, 579-590.
9. Donath, E.; Sukhorukov, G. B.; Caruso, F.; Davis, S. A.; Mohwald, H. Angew Chem
77
Int Ed 1998, 37, 2202-2205.
10. Caruso, F.; Caruso, A.; Mohwald, H. Chem Mater 1999, 11, 3309-3314.
11. Krafft, M. P.; Schieldknecht, L.; Marie, P.; Gilulieri, F.; Schmutz, M.; Poulain, N.;
Nakache, E. Langmuir 2001, 17, 2872-2877.
12. Hotz, J.; Meier, W. Adv Mater 1998, 10, 1387-1390.
13. Stewart, S.; Liu, G. J. Chem Mater 1999, 11, 1048-1054.
14. Huang, H. Y.; Remsen. E. E.; Kowalewski, T.; Wooley, K. L. J Am Chem Soc 1999,
121, 3805-3806.
15. Jang, J.; Ha, H. Langmuir 2002, 18, 5613-5618.
16. Tiarks, F.; Landfester, K.; Antonietti, M. Langmuir 2001, 17, 908-918.
17. Zhang, Y. W.; Jiang, M.; Zhao, J. X.; Wang, Z. X.; Dou, H. J.; Chen, D. Y. Langmuir
2005, 21, 1531-1538.
18. Muzzarelli, R. A. A. Chitin; Pergamon: Oxford, 1977; p 255-265.
19. Stevens, W. F.; Rao, M. S.; Chandrkrachang, S. Eds. Chitin and Chitosan:
Proceedings of the Second Asia Pacific Symposium, Asian Institute of Technology:
Bangkok, Thailand, 1996; p 206-294.
20. Chen, R. H.; Chen, H. C. Eds. Advances in Chitin Science; National Taiwan Ocean
University: Keelung, Taiwan, 1998; pp 362-494.
21. Alpar, H. O ; Eyles, J. E.; Williamson, E. D.; Smoaravapu, S. Adv Drug Del Rev
2001, 51, 173-201.
22. Mi, F. L.; Shyu, S. S.; Chen, C. T.; Schoung, J. Y. Biomaterials 1999; 20,
1603-1612.
23. Ahn, J. S.; Choi, H. K.; Cho, C. S. Biomaterials, 2001, 22, 923-928.
24. Hari, P. R.; Chandi, T.; Sharma, C. P. J Appl Polym Sci 1996, 59, 1795-1801.
78
25. Cheng, D. M.; Xia, H. B.; Chan, H. S. O. Nanotechnology 2006, 17, 1661-1667.
26. Ding, Y.; Hu, Y.; Jiang, X. Q.; Zhang, L.; Yang, C. Z. Angew Chem Int Ed 2004, 43,
6369-6372.
27.www.malvern.com
28.呂維明; 戴怡德 粉粒體量測技術; 高立圖書: 台北市, 1998; 第一章, pp1-10
29. Hsu, S.C.; Don, T. M.; Chiu, W. Y. Polym Degrad Stab 2002, 75, 73-83.
30. Chuang, C. Y.; Don, T. M.; Chiu, W. Y. J Appl Polym Sci 2008; 109, 3382-3389.
31. Peniche, C.; Arguelles, W.; Davidenko, N.; Sastre, R.; Gallardo, A.; San Roman, J.
Biomaterials 1999, 20, 1869-1878.
32. Socrates, G.. Infrared Characteristic Group Frequencies; John Wiley & Son: New
York, 1980; p 73-75.
33. Demarger-Andre, S.; Domard, A. Carbohydr Polym 1994, 23, 211-219.
34. Peniche, C.; Arguelles, W.; San Roman, J. Polym Degrad Stab 1993, 39, 21-28.
35. Wang, H. F.; Li, W. J.; Lu, Y. H.; Wang, Z. L. J. Appl Polym Sci 1997,
65,1445-1450.
36. Hu, Y.; Jiang, X. Q.; Ding, Y.; Ge, H. X.; Yuan, Y. Y.; Yang, C. Z. Biomaterials 2002,
23, 3193-3201.
37. Lin, H. R.; Yu, S. P.; Kuo, C. J.; Kao, H. J.; Lo, Y. L.; Lin, Y. J. J Biomater Sci
Polymer Edn 2007, 18, 205-221.
38. Rinaudo, M.; Pavlov, G.; Desbrieres, J. Polymer 1999, 40, 7029-7032.
Chapter5
1.Bae, Y. H.; Okano T.; Kim S. W. J Polym Sci B Polym Phys 1990, 28, 923-936
2.Binkert, T.; Oberrerich, J.; Meewes, M.; Nyffenegger, R.; Ricka, J. Macromolecules
1991, 24, 5806-5810.
3.Ge, Z.; Luo, S.; Shi, L. J. Polym Sci Part A: Polym Chem 2006, 44, 1357-1371.
4.Jiang, X; Xiong, D.; An, Y.; Zheng, P.; Zhang, W.; Shi, L. J Polym Sci Part A: Polym
Chem 2007, 45, 2812-2819.
5.Lee, C. F.; Wen, C. J.; Lin C. L.; Chiu, W. Y. J Polym Sci Part A: Polym Chem 2004,
42, 3029-3037.
6.Lin, C. L.; Chiu, W. Y.; Lee, C. F. J Colloid Interface Sci 2005, 290, 397-405.
7.Nakamura, M.; Chung, J. E.; Miyazaki, T.; Yokoyama, M.; Sakai, K.; Okano, T. React
Funct Polym 2007, 67, 1398-1407.
8.Liu, Y.; Fan, X.; Zhao, Y. J Polym Sci Part A: Polym Chem 2005, 43, 3516-3524.
9.Li, G. Y.; Song, S.; Guo, L.; Ma, S. M. J Polym Sci Part A: Polym Chem 2008, 46,
112
5028-5035.
10.Dai, S.; Ravi, P.; Tam, K. C. Soft Matter 2008, 4, 19, 435-449.
11.Tian, Y; Bromberg, L.; Lin, S. N.; Hatton, T. A.; Tam, K. C. J Controlled Released
2007, 121, 137-145.
12.Gil, E. S.; Hudson, S. M. Prog Polym Sci 2004, 19, 1173-1222.
13.Dutkiewicz, J. K. J Biomed. Materi Res 2002, 63, 373-381
14.No, H. K.; Park, N. Y.; Lee, S. H.; Hwang, H. J.; Meyers, S. P. J Food Sci 2002, 67,
1511-1514.
15.Muzzarelli R. A. A. Biomaterials 1988, 9,247-252.
16.Alpar, H. O.; Eyles, J. E.; Williamson E. D.; Smoaravapu, S. Adv Drug Del Rev
2001, 51, 173-201.
17.Mi, F. L.; Shyu S. S.; Chen, C. T.; Schoung, J. Y. Biomaterials 1999, 20, 1603-1612.
18.Hari, P. R.; Chandi, T.; Sharma C. P. J. Appl. Polym. Sci. 1996, 59, 1795-1801.
19.Lee, C. F.; Wen, C. J.; Chiu, W. Y. J Polym Sci Part A: Polym Chem 2003, 41,
2053-2063.
20.Chuang, C. Y.; Chiu W. Y.; Don, T. M. J Appl Polym Sci 2010, revised.
21.Hu, Y.; Jiang X. Q.; Ding, Y.; Chen, Q.; Yang C. Z. Adv. Mater. 2004,16, 933-937.
22.Ding, Y.; Hu, Y.; Jiang X. Q.; Zhang, L.; Yang C. Z. Angew. Chem. Int. Ed. 2004, 46,
6369-6372.
23.www.malvern.com
24.呂維明; 戴怡德 粉粒體量測技術; 高立圖書: 台北市, 1998; 第一章, pp1-10
25.Hsu, S. C.; Don, T. M.; Chiu, W. Y. Polym Degrad Stab 2002, 75, 73-83.
26.Chuang, C. Y.; Don, T. M.; Chiu W. Y. J Appl Polym Sci 2008, 109,3382-3389.
113
27.Socrates, G. Infrared Characteristic Group Frequencies; John Wiley & Son: New
York, 1980; Chapter 10 , pp64-67.
28.Socrates, G. Infrared Characteristic Group Frequencies; John Wiley & Son: New
York, 1980; Chapter 2 , pp27-31.
29.Peniche, C.; Arguelles W.; Davidenko N.; Sastre R.; Gallardo A.; San Roman J.
Biomaterial 1999, 20, 1869-1878.
30.Socrates, G. Infrared Characteristic Group Frequencies; John Wiley & Son: New
York, 1980; Chapter 10 , pp73-75.
31.Demarger-Andre, S.; Domard, A. Carbohydr Polym 1994, 23, 211-219.
32.Socrates, G. Infrared Characteristic Group Frequencies; John Wiley & Son: New
York, 1980; Chapter 9 , pp53-55.
33.Peniche, C.; Arguelles, W.; San Roman, J. Polym Degrad Stab 1993, 39, 21-28.
34.Wang, H. F.; Li, W. J.; Lu, Y. H.; Wang, Z. L. J. Appl Polym Sci 1997, 65,1445-1450.
35.Hu, Y.; Jiang X. Q.; Ding, Y.; Ge, H. X.; Yuan, Y. Y.; Yang C. Z. Biomaterial 2002,
23, 3193-3201.
36.Lin, H. R.; Yu, S. P.; Kuo, C. J.; Kao, H. J.; Lo, Y. L; Lin, Y. J. J. Biomater Sci
Polymer Edn 2007,18, 205-221.
37.Hu Y.; Chen Y.; Chen Q.; Zhang L. Y.; Jiang X. Q.; Yang C. Z. Polymer 2005, 46,
12703-12710.
Chapter6
1.Gao, Z.; Lukyanov, A. N.; Singhal, A.; Torchilin V. P. Nano Lett 2002, 2, 979-982.
2.Langer, R.; Tirrell, D. A. Nature 2004, 428, 487-492.
3.Hu, Y.; Ding, Y.; Ding, D.; Sun, M. J.; Zhang, L. Y.; Jiang, X. Q.; Yang, C. Z.
Biomacromolecules 2007, 8, 1069-1076.
4.Hu, Y.; Jiang, X. Q.; Ding, Y.; Chen, Q.; Yang, C. Z. Adv Mater 2004, 16, 933-937.
5.Caruso, F. Chem Eur J 2000, 6, 413-419.
6.Meier,W. Chem Soc Rev 2000, 29, 295-303.
7.Caruso, F.; Caruso, R. A.; Mohwald, H. Science 1998, 282, 1111-1114.
8.Berth, G.; Voigt, A.; Dautzenberg, H.; Donath, E.; Mohwald, H. Biomacromolecules
2002, 3, 579-590.
9.Donath, E.; Sukhorukov, G. B.; Caruso, F.; Davis, S. A.; Mohwald, H. Angew Chem
Int Ed 1998, 37, 2202-2205.
10.Caruso, F.; Caruso, A.; Mohwald, H. Chem Mater 1999, 11, 3309-3314.
11.Qian, Z.; Zhang, Z. C.; Li, H. M.; Liu, H. R.; Hu, Z. Q. J Polym Sci Part A: Polym
Chem 2008, 46, 228-237.
12.Zhou, C. Q.; Han, J.; Song, G. P.; Guo, R. J Polym Sci Part A: Polym Chem 2008, 46,
141
3563-3572.
13.Krafft, M. P.; Schieldknecht, L.; Marie, P.; Gilulieri, F.; Schmutz, M.; Poulain, N.;
Nakache, E. Langmuir 2001, 17, 2872-2877.
14.Hotz, J.; Meier, W. Adv Mater 1998, 10, 1387-1390.
15.Stewart, S.; Liu, G. J. Chem Mater 1999, 11, 1048-1054.
16.Huang, H. Y.; Remsen, E. E.; Kowalewski, T.; Wooley, K. L. J Am Chem Soc 1999,
121, 3805-3806.
17.Mincheva, R.; Bougard, F.; Paneva, D.; Vachaudez, M.; Manolova, N.; Dubolis, P.;
Rashkov, I. J Polym Sci Part A: Polym Chem 2008, 46, 6712-6721.
18.Gao, K. J.; Li, G. T.; Shi H. W.; Lu, X. P.; Gao, Y. B.; Xu, B. Q. J Polym Sci Part A:
Polym Chem 2008, 46, 4889-4904.
19.Shimizu, T. J Polym Sci Part A: Polym Chem 2008, 46, 2601-2611.
20.Jang, J.; Ha, H. Langmuir 2002, 18, 5613-5618.
21.Tiarks, F.; Landfester, K.; Antonietti, M. Langmuir 2001, 17, 908-918.
22.Alpar, H. O.; Eyles, J. E.; Williamson, E. D.; Smoaravapu, S. Adv Drug Del Rev
2001, 51, 173-201.
23.Mi, F. L.; Shyu, S. S.; Chen, C. T.; Schoung, J. Y. Biomaterials 1999, 20, 1603-1612.
24.Hari, P. R.; Chandi, T.; Sharma, C. P. J Appl Polym Sci 1996, 59, 1795-1801.
25.Cheng, D. M., Xia, H. B., Chan, H. S. O. Nanotechnology 2006, 17, 1661-1667.
26.Bae, Y. H.; Okano, T.; Kim, S. W. J Polym Sci Part B: Polym Phys 1990, 28,
923-936.
27.Binkert, T.; Oberrerich, J.; Meewes, M.; Nyffenegger, R.; Ricka, J. Macromolecules
1991, 24, 5806-5810.
28.Ge, Z.; Luo, S.; Shi, L. J. Polym Sci Part A: Polym Chem 2006, 44, 1357-1371.
142
29.Jiang, X; Xiong, D.; An, Y.; Zheng, P.; Zhang, W.; Shi, L. J Polym Sci Part A: Polym
Chem 2007, 45, 2812-2819.
30.Lee, C. F.; Wen, C. J.; Lin, C. L.; Chiu, W. Y. J Polym Sci Part A: Polym Chem 2004,
42, 3029-3037.
31.Lin, C. L.; Chiu, W. Y.; Lee, C. F. J Colloid Interface Sci 2005, 290, 397-405.
32.Lee, C. F.; Lin, C. C.; Chiu, W. Y. J of Polym Sci Part A: Polym Chem 2008, 46,
5734-5741.
33.Liu, Y.; Fan, X.; Zhao, Y. J Polym Sci Part A: Polym Chem 2005, 43, 3516-3524.
34.Li, G. Y.; Song, S.; Guo, L.; Ma, S. M. J Polym Sci Part A: Polym Chem 2008, 46,
5028-5035.
35.Lee, C. F.; Wen, C. J.; Chiu, W. Y. J Polym Sci Part A: Polym Chem 2003, 41,
2053-2063.
36.Chuang, C. Y.; Don, T. M.; Chiu, W. Y. J Polym Sci Part A: Polym Chem 2009,
47,2798-2810.
37.Dou, H. J.; Jiang, M.; Peng, H. S.; Chen, D. Y.; Hong, Y. Angew Chem Int Ed 2003,
42, 1516-1519.
38.Varum, K. M.; Ottoy, M. H.; Smidsrod, S. Carbohydr Polym 2001, 46, 89-98.
39.www.malvern.com
40.呂維明; 戴怡德 粉粒體量測技術; 高立圖書: 台北市, 1998; 第一章, pp1-10
41.Graczyk, T.; Hornof, V. J Polym Sci Part A: Polym Chem 1988, 26, 2019-2029.
42.Fernandez, M. J.; Casinos, I.; Guzman, J. M. J Polym Chem Part A: Polym Chem
1990, 28, 2275-2292.
43.Don, T. M.; King, C. F.; Chiu, W. Y. J Appl Polym Sci 2002, 86, 3057-3063.
143
44.Don, T. M.; King, C. F.; Chiu, W. Y. Carbohydr Polym 2006, 63, 331-339.
45.Trombotto, S.; Ladaviere, C.; Delolme, F.; Domard, A. Biomacromolecules 2008,
9,1371-1378.
46.Guo, B. L.; Yuan, J. F.; Gao, Q. Y. Polym Int 2008, 57, 463-468.
47.Chung, H. J.; Bae, J. W.; Park, H. D.; Lee, J. W.; Park, K. D. Macromol Symp 2005,
224,275-286.
48.Hu, Y.; Jiang X. Q.; Ding, Y.; Ge, H. X.; Yuan, Y. Y.; Yang C. Z. Biomaterial 2002,
23, 3193-3201.
49.Lin, H. R.; Yu, S. P.; Kuo, C. J.; Kao, H. J.; Lo, Y. L; Lin, Y. J. J. Biomater Sci
Polymer Edn 2007,18, 205-221.
Chapter7
1.Gil, E. S.; Hudson, S. M. Prog Polym Sci 2004, 29, 1173-1222.
2.Pinkrah, V. T.; Snowden M. J.; Mitchell, J. C.; Seidel, J.; Chowdhry, B. Z.; Fern, G. R.
Langmuir 2003, 19, 585-590.
3.Peng, T.; Cheng, Y. L. Polymer 2001, 41, 2091-2100.
4.Bignotti, F.; Penco, M.; Sartore, L.; Peroni, I.; Mendichi, R.; Casolaro, M.; D’Amore,
A. Polymer 2000, 41, 8247-8256.
5.Gan, L. H.; Gan, Y. Y.; Deen, G. R. Macromolecules 2000, 33, 7893-7897.
6.Kurisawa, M.; Yui, N. J Control Release 1998, 54, 191-200.
7.Qui, Y.; Park, K. Adv Drug Deliv Rev 2001, 53, 321-339.
8.Sershen, S.; West, J. Adv Drug Deliv Rev 2002, 54, 1225-1235.
9.Chilkoti, A.; Dreher, M. R.; Meyer, D. E.; Raucher, D. Adv Drug Deliv Rev 2002, 54,
613-630.
10.Bae, Y. H.; Okano, T.; Kim, S. W. J Polym Sci Part B: Polym Phys 1990, 28,
923-936.
11.Binkert, T.; Oberrerich, J.; Meewes, M.; Nyffenegger, R.; Ricka, J. Macromolecules
1991, 24, 5806-5810.
12.Ge, Z.; Luo, S.; Shi, L. J. Polym Sci Part A: Polym Chem 2006, 44, 1357-1371.
173
13.Jiang, X; Xiong, D.; An, Y.; Zheng, P.; Zhang, W.; Shi, L. J Polym Sci Part A: Polym
Chem 2007, 45, 2812-2819.
14.Schild, H. G; Prog Polym Sci 1992, 17, 163-249.
15.Shibayama, M.; Tanaka, T. Adv Polym Sci1993, 109, 1-62.
16.Chen, G.; Hoffman, A. S. Nature 1995, 373, 49-52.
17.Lee, C. F.; Wen, C. J.; Lin, C. L.; Chiu, W. Y. J Polym Sci Part A: Polym Chem 2004,
42, 3029-3037.
18.Lin, C. L.; Chiu, W. Y.; Lee, C. F. J Colloid Interface Sci 2005, 290, 397-405.
19.Lee, C. F.; Lin, C. C.; Chiu, W. Y. J of Polym Sci Part A-Polym Chem 2008, 46,
5734-5741.
20.Liu, Y.; Fan, X.; Zhao, Y. J Polym Sci Part A: Polym Chem 2005, 43, 3516-3524.
21.Li, G. Y.; Song, S.; Guo, L.; Ma, S. M. J Polym Sci Part A: Polym Chem 2008, 46,
5028-5035.
22.Chuang, C. Y.; Don, T. M.; Chiu, W. Y. J Polym Sci Part A: Polym Chem 2009, 47,
2798-2810.
23.Gao, Z.; Lukyanov, A. N.; Singhal, A.; Torchilin V. P. Nano Lett 2002, 2, 979-982.
24.Langer, R.; Tirrell, D. A. Nature 2004, 428, 487-492.
174
25.Hu, Y.; Jiang, X. Q.; Ding, Y.; Chen, Q.; Yang, C. Z. Adv Mater 2004, 16, 933-937.
26.Meier,W. Chem Soc Rev 2000, 29, 295-303.
27.Caruso, F. Chem Eur J 2000, 6, 413-419.
28.Caruso, F.; Caruso, R. A.; Mohwald, H. Science 1998, 282, 1111-1114.
29.Berth, G..; Voigt, A.; Dautzenberg, H.; Donath, E.; Mohwald, H. Biomacromolecules
2002, 3, 579-590.
30.Donath, E.; Sukhorukov, G. B.; Caruso, F.; Davis, S. A.; Mohwald, H. Angew Chem
Int Ed 1998, 37, 2202-2205.
31.Caruso, F.; Caruso, A.; Mohwald, H. Chem Mater 1999, 11, 3309-3314.
32.Qian, Z.; Zhang, Z. C.; Li, H. M.; Liu, H. R.; Hu, Z. Q. J Polym Sci Part A: Polym
Chem 2008, 46, 228-237.
33.Krafft, M. P.; Schieldknecht, L.; Marie, P.; Gilulieri, F.; Schmutz, M.; Poulain, N.;
Nakache, E. Langmuir 2001, 17, 2872-2877.
34.Hotz, J.; Meier, W. Adv Mater 1998, 10, 1387-1390.
35.Stewart, S.; Liu, G. J. Chem Mater 1999, 11, 1048-1054.
36.Huang, H. Y.; Remsen, E. E.; Kowalewski, T.; Wooley, K. L. J Am Chem Soc 1999,
121, 3805-3806.
37.Jang, J.; Ha, H. Langmuir 2002, 18, 5613-5618.
38.Tiarks, F.; Landfester, K.; Antonietti, M. Langmuir 2001, 17, 908-918.
175
39.Lee, C. F.; Wen, C. J.; Chiu, W. Y. J Polym Sci Part A: Polym Chem 2003, 41,
2053-2063.
40.Dou, H. J.; Jiang, M.; Peng, H. S.; Chen, D. Y.; Hong, Y. Angew Chem Int Ed 2003,
42, 1516-1519.
41.Varum, K. M.; Ottoy, M. H.; Smidsrod, S. Carbohydr Polym 2001, 46, 89-98.
42.www.malvern.com
43.呂維明; 戴怡德 粉粒體量測技術; 高立圖書: 台北市, 1998; 第一章, pp1-10
44.Graczyk, T.; Hornof, V. J Polym Sci Part A: Polym Chem 1988, 26, 2019-2029.
45.Fernandez, M. J.; Casinos, I.; Guzman, J. M. J Polym Chem Part A: Polym Chem
1990, 28, 2275-2292.
46.Don, T. M.; King, C. F.; Chiu, W. Y. J Appl Polym Sci 2002, 86, 3057-3063.
47.Don, T. M.; King, C. F.; Chiu, W. Y. Carbohydr Polym 2006, 63, 331-339.
48.Trombotto, S.; Ladaviere, C.; Delolme, F.; Domard, A. Biomacromolecules 2008,
9,1371-1378.
49.Guo, B. L.; Yuan, J. F.; Gao, Q. Y. Polym Int 2008, 57, 463-468.
50.Chung, H. J.; Bae, J. W.; Park, H. D.; Lee, J. W.; Park, K. D. Macromol Symp 2005,
224,275-286.
51.Hu, Y.; Jiang X. Q.; Ding, Y.; Ge, H. X.; Yuan, Y. Y.; Yang C. Z. Biomaterial 2002,
176
23, 3193-3201.
52.Lin, H. R.; Yu, S. P.; Kuo, C. J.; Kao, H. J.; Lo, Y. L; Lin, Y. J. J. Biomater Sci
Polymer Edn 2007,18, 205-221.
Chapter8
1.Peppas, N. A.; Ritger, P. L. J Controlled Release 1987, 5, 23-36.
2.Lee, P. I. J Controlled Release 1985, 2, 277-288.
3. Peppas, N. A.; Ritger, P. L. J Controlled Release 1987, 5, 37-43.
4.Crank, J. Mathematics of Diffusion 2nd edn; Clarendon Press: Oxford 1975.
5.Carslaw, H. S.; Jaeger, J. C. Conduction of Heat in Solids 2nd edn; Clarendon Press:
Oxford 1959.
6.Jacobs, M. H. Diffusion Process; Springer-Verlag: New York 1967.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46665-
dc.description.abstract本研究是利用化學設計方法,將幾丁聚醣與環境敏感型高分子加以結合,製備出不同結構與形態的環境敏感型幾丁聚醣奈米顆粒,藉由反應條件控制,本研究成功合成出中空結構、多孔結構以及實心結構的環境敏感型奈米顆粒,並分別探討其生成機制、顆粒結構形態、環境應答特性以及應用於藥物控制釋放載體之可行性。
(一)pH敏感型幾丁聚醣中空奈米顆粒
在此是利用無乳化劑乳化聚合方式,以過硫酸鉀作為起始劑,將丙烯酸單體與幾丁聚醣進行聚合反應,生成幾丁聚醣-聚丙烯酸奈米顆粒,並探討所合成顆粒之結構形態、環境應答特性以及應用於藥物控制釋放載體與酸鹼緩衝材料之可行性。實驗發現,所合成之幾丁聚醣-聚丙烯酸奈米顆粒表面帶有正電,在特定幾丁聚醣/丙烯酸進料組成之下所合成之顆粒,呈現中空結構。顆粒形態與粒徑會隨不同進料組成而有所改變,且具備酸鹼應答特性,可應用於酸鹼緩衝材料,另外,幾丁聚醣-聚丙烯酸奈米顆粒應用於藥物控制釋放載體上,具有長時間釋放之效果,且在不同pH值環境下,釋放行為亦有所差異。
(二)pH/溫度雙重敏感型幾丁聚醣實心奈米顆粒
本部分是將丙烯酸單體與氮-異丙基丙烯醯胺單體,以過硫酸鉀為起始劑,利用無乳化劑乳化聚合方式與幾丁聚醣進行共聚合反應,生成幾丁聚醣-聚(丙烯酸-co-氮-異丙基丙烯醯胺)奈米顆粒,並探討所合成顆粒之形成機制、結構形態、環境應答特性以及應用於藥物控制釋放載體之可行性。實驗發現,所合成之幾丁聚醣-聚(丙烯酸-co-氮-異丙基丙烯醯胺)奈米顆粒表面帶有正電,且顆粒結構由中空轉為實心。顆粒形態與粒徑會隨不同進料組成而有所改變,且在不同溫度以及II酸鹼環境下,所合成之顆粒其粒徑與表面電位都會隨之變化,表示顆粒同時具備溫度敏感以及酸鹼敏感之特性,另外,幾丁聚醣-聚(丙烯酸-co-氮-異丙基丙烯醯胺)奈米顆粒應用於藥物控制釋放載體上,具有長時間釋放之特性,且在不同釋放環境下,其藥物釋放曲線也會有所改變。
(三)自組裝法製備環境敏感型幾丁聚醣微多孔奈米顆粒
此處是將氮-異丙基丙烯醯胺單體,以硝酸銨鈰為起始劑,利用接枝聚合方式與幾丁聚醣進行共聚合反應,生成幾丁聚醣-聚(氮-異丙基丙烯醯胺)接枝共聚物/聚(氮-異丙基丙烯醯胺)自聚物混合溶液,經適當稀釋與特殊環境下,利用自組裝的方式,生成幾丁聚醣-聚(氮-異丙基丙烯醯胺)奈米顆粒,並探討所合成顆粒之形成機制、結構形態、環境應答特性以及應用於藥物控制釋放載體之可行性。實驗發現,所合成之幾丁聚醣-聚(氮-異丙基丙烯醯胺)奈米顆粒表面帶有正電,且顆粒內部呈現微多孔結構。顆粒粒徑會隨共聚物組成而有所改變,且在不同溫度以及酸鹼環境下,顆粒粒徑與表面電位都會隨之變化,表示該顆粒同時具備溫度敏感以及酸鹼敏感之特性,另外,幾丁聚醣-聚(氮-異丙基丙烯醯胺)奈米顆粒應用於藥物控制釋放載體上,由於結構為微多孔形態,因此顆粒載藥量可明顯提升,且同時具備長時間釋放之效果,在不同釋放環境下,其藥物釋放曲線也會有所差異,具有控制釋放之能力。
(四)接枝共聚物分子自組裝製備環境敏感型幾丁聚醣多孔/中空奈米顆粒
在此是將氮-異丙基丙烯醯胺單體,以硝酸銨鈰為起始劑,利用接枝聚合方式與幾丁聚醣進行共聚合反應,生成幾丁聚醣-聚(氮-異丙基丙烯醯胺)接枝共聚物/聚(氮-異丙基丙烯醯胺)自聚物,將聚(氮-異丙基丙烯醯胺)自聚物移除後,在適當共聚物濃度與環境下,利用自組裝的方式生成幾丁聚醣-聚(氮-異丙基丙烯醯胺)多孔/中空奈米顆粒,並探討所合成顆粒之形成機制、結構形態、環境應答特性以及應用於藥物控制釋放載體之可行性。實驗發現,所合成之幾丁聚醣-聚(氮III-異丙基丙烯醯胺)多孔/中空奈米顆粒表面帶有正電,且顆粒會隨環境溫度不同,內部結構呈現多孔/中空之變化。顆粒形態與粒徑會隨共聚物接枝分子量以及組成不同而有所改變,且在不同溫度以及酸鹼環境下,顆粒粒徑與表面電位都會隨之變化,表示顆粒同時具備溫度敏感以及酸鹼敏感之特性,另外,幾丁聚醣-聚(氮-異丙基丙烯醯胺)多孔/中空奈米顆粒應用於藥物控制釋放載體上,由於結構為多孔/中空形態,因此可有效提高顆粒載藥量,同時具有長時間釋放之效果,在不同釋放環境下,其藥物釋放曲線也會有所改變,具有控制釋放之能力。
(五)環境敏感型幾丁聚醣奈米顆粒藥物釋放行為模擬
本部分則是依實驗所製得奈米顆粒結構與形態,以質量傳遞模型進行藥物釋放量與時間關係之理論推導,並與實驗所得各類型奈米顆粒之藥物釋放曲線比較,計算所包覆藥物於奈米顆粒中之擴散係數。實驗發現,藥物於奈米顆粒之中的擴散係數,與顆粒結構以及藥物釋放所在環境溫度與酸鹼值有關。
zh_TW
dc.description.abstractIn this research, chitosan-based stimuli-responsive nanoparticles were prepared by different polymerization method. Structure, morphology, environmental sensitive behavior and application in drug release were studied in this research.
In the first part, polyelectrolyte complex particles of chitosan-poly(acrylic acid) (CS-PAA) through polymerization of acrylic acid (AA) in the presence of chitosan (CS). The prepared CS-PAA complex particles had positive zeta potential and dispersed very well in the aqueous solution. Structure and morphology of complex particles were investigated with the changes in the feeding molar ratio of glucosamine unit in CS to AA monomer. It was found at a molar ratio of 1.0/1.1, a hollow structure in complex particles was observed after polymerization. The synthesized complex particles were environmentally sensitive in which their mean diameter could change with the pH value of medium. Moreover, the complex particles showed a continuous release of the encapsulated doxycycline hyclate up to 8 days. These complex particles with environmentally sensitive properties are expected to be utilized in the hydrophilic drug delivery system.
In the second part, thermo- and pH-responsive chitosan-based nanoparticles were synthesized via the surfactant-free emulsion polymerization. The thermal/pH dual responsive properties of these nanoparticles were designed by the addition of a pH sensitive monomer, acrylic acid (AA), to be copolymerized with N-isopropylacrylamide (NIPAAm) in a chitosan (CS) solution. The molar ratio of CS/AA/NIPAAm in the feed was changed to investigate its effect on structure, morphology, thermo- and pH-responsive properties of the nanoparticles. It was found that CS-PAA-PNIPAAm nanoparticles could be well dispersed in the aqueous solution and carried positive charges on the surface. The addition of thermal-sensitive NIPAAm monomer affected the polymerization mechanism and interactions between CS and AA. The particle size of the nanoparticles was found to be varied with the composition of NIPAAm monomer in the feed. The synthesized nanoparticles exhibited stimuli-responsive properties, and their mean diameter thus could be manipulated by changing pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in-vitro release experiment. The environmentally responsive nanoparticles are expected to be utilized in many fields such as drug delivery system.
In the third part, thermo- and pH-responsive chitosan-based porous nanoparticles were prepared by the temperature-dependent self assembly method. The chitosan-graft-poly(N-isopropylacrylamide) (CS-g-PNIPAAm) copolymer solution was prepared through polymerization of N-isopropylacrylamide (NIPAAm) monomer in the presence of chitosan (CS) solution using cerium ammounium nitrate as the initiator. Then, CS-g-PNIPAAm solution was diluted by deionized water and heated to 40℃ for CS-g-PNIPAAm self-assembly. After that, CS-g-PNIPAAm assembled to form micelles in which shell layer was CS. Crosslinking agent was used to reinforce the micelle structure to form nanoparticle. The molar ratio of CS/NIPAAm in the feed mixture was changed to investigate its effect on structure, morphology, thermo- and pH-responsive properties of the nanoparticles. TEM images showed that a porous structure of nanoparticles was developed. The synthesized nanoparticles carried positive charges on the surface and exhibited stimuli-responsive properties, and their mean diameter thus could be manipulated by changing pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in-vitro release experiment. These porous particles with environmentally sensitive properties are expected to be utilized in hydrophilic drug delivery system.
In the fourth part, stimuli-responsive porous/hollow nanoparticles were prepared by the self assembly of CS-based graft copolymers. The chitosan-graft-poly(N-isopropylacrylamide) (CS-g-PNIPAAm) copolymer solution was prepared through polymerization of N-isopropylacrylamide (NIPAAm) monomer in the presence of chitosan (CS) solution using cerium ammounium nitrate as the initiator. Then, CS-g-PNIPAAm copolymers were dissolved in acetic acid aqueous solution and heated to 40℃ for CS-g-PNIPAAm self-assembly. After that, CS-g-PNIPAAm assembled to form micelles and crosslinking agent was used to reinforce the micelle structure to form nanoparticles. The molecular weight of grafted PNIPAAm on CS chains was changed to investigate its effect on structure, morphology, thermal- and pH-responsive properties of the nanoparticles. TEM images showed that a porous or hollow structure in the interior of nanoparticles was developed. The synthesized nanoparticles carried positive charges on the surface and exhibited stimuli-responsive properties, and their mean diameter thus could be manipulated by changing pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in-vitro release experiment. These porous/hollow particles with environmentally sensitive properties are expected to be utilized in drug release.
In the fifth part, the model of drug release behavior of CS-based nanoparticles was developed from Fick’s second law. According to the structure and the release environment of nanoparticles, the theoretical relationship between drug release amount and release time for different structure CS-based nanoparticles was developed. Compared with experiment results, the range of diffusivity for encapsulated-drug in the nanoparticles was evaluated.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:21:54Z (GMT). No. of bitstreams: 1
ntu-99-D95549003-1.pdf: 4833716 bytes, checksum: ae3ed726f1438c0002670784d0b3563d (MD5)
Previous issue date: 2010
en
dc.language.isozh-TW
dc.subject丙烯酸zh_TW
dc.subject幾丁聚醣zh_TW
dc.subject氮-異丙基丙烯醯胺zh_TW
dc.subject控制釋放zh_TW
dc.subject自組裝zh_TW
dc.subject環境敏感zh_TW
dc.subject奈米顆粒zh_TW
dc.subjectacrylic aciden
dc.subjectself-assemblyen
dc.subjectnanoparticlesen
dc.subjectcontrolled releaseen
dc.subjectstimuli-responsiveen
dc.subjectchitosanen
dc.subjectN-isopropylacrylamideen
dc.title環境敏感型幾丁聚醣奈米顆粒合成、性質與應用研究zh_TW
dc.titleSynthesis and Characterization of Stimuli-Responsive Chitosan-Based Nanoparticlesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee林江珍(Jiang-Jen Lin),謝國煌,陳榮輝,董崇民,陳文章,陳崇賢
dc.subject.keyword幾丁聚醣,丙烯酸,氮-異丙基丙烯醯胺,奈米顆粒,自組裝,環境敏感,控制釋放,zh_TW
dc.subject.keywordchitosan,acrylic acid,N-isopropylacrylamide,stimuli-responsive,controlled release,nanoparticles,self-assembly,en
dc.relation.page219
dc.rights.note有償授權
dc.date.accepted2010-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
4.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved