請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46663完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周涵怡(Han Yi Chou) | |
| dc.contributor.author | Chia Yun Lee | en |
| dc.contributor.author | 李佳芸 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:21:47Z | - |
| dc.date.available | 2013-10-03 | |
| dc.date.copyright | 2011-10-03 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-23 | |
| dc.identifier.citation | Andersson, A. S., F. Backhed, et al. (2003). 'Nanoscale features influence epithelial cell morphology and cytokine production.' Biomaterials 24(20): 3427-3436.
Auksorius, E., B. R. Boruah, et al. (2008). 'Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging.' Opt Lett 33(2): 113-115. Berry, C. C., G. Campbell, et al. (2004). 'The influence of microscale topography on fibroblast attachment and motility.' Biomaterials 25(26): 5781-5788. Boado, R. J., E. K. Hui, et al. (2011). 'CHO cell expression, long-term stability, and primate pharmacokinetics and brain uptake of an IgG-paroxonase-1 fusion protein.' Biotechnol Bioeng 108(1): 186-196. Choi, C. H., S. H. Hagvall, et al. (2007). 'Cell interaction with three-dimensional sharp-tip nanotopography.' Biomaterials 28(9): 1672-1679. Chou, L., J. D. Firth, et al. (1995). 'Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts.' J Cell Sci 108 ( Pt 4): 1563-1573. Chyan, J. Y., W. C. Hsu, et al. (2009). 'Broadband antireflective poly-Si nanosponge for thin film solar cells.' Opt Express 17(6): 4646-4651. Cukierman, E., R. Pankov, et al. (2002). 'Cell interactions with three-dimensional matrices.' Curr Opin Cell Biol 14(5): 633-639. Curtis, A. and C. Wilkinson (1997). 'Topographical control of cells.' Biomaterials 18(24): 1573-1583. Dalby, M. J., M. O. Riehle, et al. (2003). 'Nonadhesive nanotopography: fibroblast response to poly(n-butyl methacrylate)-poly(styrene) demixed surface features.' J Biomed Mater Res A 67(3): 1025-1032. Dalby, M. J., M. O. Riehle, et al. (2005). 'Morphological and microarray analysis of human fibroblasts cultured on nanocolumns produced by colloidal lithography.' Eur Cell Mater 9: 1-8; discussion 8. Dhurjati, R., X. Liu, et al. (2006). 'Extended-term culture of bone cells in a compartmentalized bioreactor.' Tissue Eng 12(11): 3045-3054. Frey, M. T., I. Y. Tsai, et al. (2006). 'Cellular responses to substrate topography: role of myosin II and focal adhesion kinase.' Biophys J 90(10): 3774-3782. Giannone, G., B. J. Dubin-Thaler, et al. (2004). 'Periodic lamellipodial contractions correlate with rearward actin waves.' Cell 116(3): 431-443. Gramer, M. J., J. J. Eckblad, et al. (2011). 'Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose.' Biotechnol Bioeng 108(7): 1591-1602. Gustafsson, M. G. (2000). 'Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.' J Microsc 198(Pt 2): 82-87. Hein, B., K. I. Willig, et al. (2008). 'Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell.' Proc Natl Acad Sci U S A 105(38): 14271-14276. Hell, S. W. (2003). 'Toward fluorescence nanoscopy.' Nat Biotechnol 21(11): 1347-1355. Huang, B., W. Wang, et al. (2008). 'Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.' Science 319(5864): 810-813. Janmey, P. A., P. C. Georges, et al. (2007). 'Basic rheology for biologists.' Methods Cell Biol 83: 3-27. Krishnan, V., L. A. Shuman, et al. (2011). 'Dynamic interaction between breast cancer cells and osteoblastic tissue: Comparison of Two- and Three-dimensional cultures.' J Cell Physiol 226(8): 2150-2158. Lee, K. B., S. J. Park, et al. (2002). 'Protein nanoarrays generated by dip-pen nanolithography.' Science 295(5560): 1702-1705. Low, S. P., N. H. Voelcker, et al. (2009). 'The biocompatibility of porous silicon in tissues of the eye.' Biomaterials 30(15): 2873-2880. Pelham, R. J., Jr. and Y. Wang (1997). 'Cell locomotion and focal adhesions are regulated by substrate flexibility.' Proc Natl Acad Sci U S A 94(25): 13661-13665. Peng, K., H. Fang, et al. (2006). 'Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution.' Chemistry 12(30): 7942-7947. Pertsinidis, A., Y. Zhang, et al. (2010). 'Subnanometre single-molecule localization, registration and distance measurements.' Nature 466(7306): 647-651. Qi, S., C. Yi, et al. (2009). 'Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays.' ACS Appl Mater Interfaces 1(1): 30-34. Roach, P., D. Eglin, et al. (2007). 'Modern biomaterials: a review - bulk properties and implications of surface modifications.' J Mater Sci Mater Med 18(7): 1263-1277. Rose, G. G. (1967). 'The circumfusion system for multipurpose culture chambers. I. Introduction to the mechanics, techniques, and basic results of a 12-chamber (in vitro) closed circulatory system.' J Cell Biol 32(1): 89-112. Sapelkin, A. V., S. C. Bayliss, et al. (2006). 'Interaction of B50 rat hippocampal cells with stain-etched porous silicon.' Biomaterials 27(6): 842-846. Steinberg, T., S. Schulz, et al. (2007). 'Early keratinocyte differentiation on micropillar interfaces.' Nano Lett 7(2): 287-294. Tan, J., H. Shen, et al. (2001). 'Micron-scale positioning of features influences the rate of polymorphonuclear leukocyte migration.' Biophys J 81(5): 2569-2579. Tzvetkova-Chevolleau, T., A. Stephanou, et al. (2008). 'The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure.' Biomaterials 29(10): 1541-1551. Yang, C. Y., L. Y. Huang, et al. (2010). 'Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces.' Eur Cell Mater 20: 415-430. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46663 | - |
| dc.description.abstract | 奈米材料具有獨特的物理和化學特性非常適合發展生物醫學的應用。Nanosponge 是一種嶄新的材料,經由蝕刻氧化矽表面得到的奈米結構,可以呈現出粗糙或光滑的表面,也可以設計成所需的圖案,並且表面非常容易進行化學官能基修飾。這個表面特殊的奈米結構,在可見光波段有極低的反射率,也因為生物相容性好,亦可以當作細胞生長的平台。反射式顯微鏡是生物影像上經常使用的研究工具,我們假設nanosponge的高吸光率可以幫助降低背景反射並提高訊號和雜訊的比率。為了證明這個假設,我們比較了將傳統的0.17 mm蓋玻片或nanosponge墊在150 nm 奈米銀、6 μ聚本乙烯微米球甚至是170mm螢光奈米求底下,都能在nanosponge上得到比較集中的訊號以及比較強對比度的影像。除此之外,我們先證明了nanosponge的生物相容性是非常好的,更進一步想發展nanosponge在生物醫學方面的應用。根據實驗結果我們發現,nanosponge似乎能夠當作一個生物支持的平台,讓分泌性的胰島素瘤細胞持續穩定分泌胰島素。本研究證明了奈米蝕刻的nanosponge不論在光學或生物醫學上都非常具有發展潛力。 | zh_TW |
| dc.description.abstract | The unique physical and chemical properties presented by nanomaterials envision powerful applications in biomedicine. For instance, custom designed optical properties through nano-topography may provide revolutionary impact on bioimaging and medical diagnostics. Nanosponge is a novel nano-topographic oxidized silicon material that is capable of robust and versatile surface chemical modifications. Its characteristic surface nanostructure renders minimal optical reflection at the visible light spectrum, while the silicon nature of the material provides good support for cell growth and biocompatibility. Since reflection mode microscopy represents one of the most important research tools for direct visualization of life processes, we reasoned that the light absorbing nature of the nanosponge may help reduce background illumination resulting in improved signal to noise ratio during reflection mode imaging. To test this hypothesis, we compared reflection mode signals derived from standardized materials when padded on conventional cover glass or nanosponge. Our data suggest that reflection visualization of 150 nm silver nanoparticles, 6 μm polystyrene microspheres as well as fluorescence emission by 170 nm fluoresecent microspheres, result in an increased optical density and contrast of their signals over a reduced general background. In addition, according to our characterization on the in vitro biocompatibility of the nanosponge, we were curious about the possible applications of the nanosponge in biomedicine. Our results shown nanosponge may display as a biosupport platform of secreting cells. This study demonstrates the potential developments of nano-topography nanosponge in optics and biomedicine. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:21:47Z (GMT). No. of bitstreams: 1 ntu-100-R98450016-1.pdf: 2118239 bytes, checksum: 09a6f48705ab455423e64cf4b31555a3 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 5
致謝 6 Abstract 8 中文摘要 10 I. Introduction 11 1. Biomaterials and Nanomaterials 11 2. Nano-topography 12 3. Nanosponge 13 4. Bioreactor 14 II. Materials and Methods 16 1. Nanosponge 16 2. Cell lines and Cell culture 16 3. Immunofluorescence 18 4. Cell viability assay 19 5. Fluorescence microsphere 21 6. Polystyrene beads 21 7. Time lapse assay 22 8. Enzyme-linked immunosorbent assay (ELISA) 22 9. Western blot 23 III. Result 25 1. Exploit the physical properties of nano-topography silicon nanosponges in optical application. 25 2. Improve bright and dark field imagings on nano-topography nanosponge by lower down optical reflection. 26 3. To employ characteristic surface nanostructure of silicon nanosponges in fluorescence imaging 27 4. Confirm the biocompatibility of nano-topography silicon nanosponges 29 5. The morphology of cells on different substrates 30 6. Cell mobility on different substrates by Time lapse assay 31 7. Developing silicon nanosponge as bioreactor material in biomedical 32 IV. Discussion 34 1. Outlooks on the application of nano-topography nanosponge in optics 34 2. The movement of cells on nanosponge 34 3. Nano-topography nanosponge may use as a bioreactor platform to stimulate secretion of secreting cells 35 V. Conclusion 37 VI. Future work 38 VII. Reference 40 VIII. Figure content 44 IX. Appendix 58 | |
| dc.language.iso | en | |
| dc.subject | 反射率 | zh_TW |
| dc.subject | nanosponge | zh_TW |
| dc.subject | 奈米蝕刻 | zh_TW |
| dc.subject | 生物支持平台 | zh_TW |
| dc.subject | 對比度 | zh_TW |
| dc.subject | 胰島素分泌 | zh_TW |
| dc.subject | contrast | en |
| dc.subject | reflection rate | en |
| dc.subject | nanosponge | en |
| dc.subject | nano-topography | en |
| dc.subject | biosupport platform | en |
| dc.subject | insulin secretion | en |
| dc.title | 探討奈米材料nanosponge在生物醫學上的應用 | zh_TW |
| dc.title | Application of Nanomaterial in BioMedicine: the Nanosponge | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李伯訓(Bor-Shiunn Lee),宋孔彬(Kung-Bin Sung) | |
| dc.subject.keyword | 奈米蝕刻,nanosponge,反射率,對比度,生物支持平台,胰島素分泌, | zh_TW |
| dc.subject.keyword | nano-topography,nanosponge,reflection rate,contrast,biosupport platform,insulin secretion, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-23 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
