請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46657完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李嗣涔(Si-Chen Lee) | |
| dc.contributor.author | Pei-En Chang | en |
| dc.contributor.author | 張沛恩 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:21:24Z | - |
| dc.date.available | 2010-07-22 | |
| dc.date.copyright | 2010-07-22 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-19 | |
| dc.identifier.citation | [1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature
(London) 391, 667 (1998). [2] H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, Phys. Rev. B 58, 6779 (1998). [3] Economou, E. N. Surface plasmons in thin flms. Phys. Rev. 182, 539–554 (1969). [4] Burke, J. J., Stegeman, G. I. & Tamir, T. Surface-polariton-like waves guided by thin, lossy metal flms. Phys. Rev B 33, 5186–5201 (1986). [5] Quinten, M., Leitner, A., Krenn, J. R. & Aussenegg, F. R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998). [6] Maier, S. A. et al. Local detection of electromagnetic energy transport below the difraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003). [7] Onuki, T. et al. Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides. J. Microsc. 210, 284–287 (2003). [8] Berini, P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures. Phys Rev. B 63, 125417 (2001). [9] Nerkararyan, K. V. Superfocusing of a surface polariton in a wedge-like structure. Phys. Lett. A 237, 103–105 (1997). [10] Verhagen, E., Polman, A. & Kuipers, L. K. Nanofocusing in laterally tapered plasmonic waveguides. Opt. Express 16, 45–57 (2008). [11] Gramotnev, D. K. Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach. J. Appl. Phys. 98, 104302 (2005). [12] Gramotnev, D. K., Vogel, M. W. & Stockman, M. I. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J. Appl. Phys. 104, 034311 (2008). [13] Kurihara, K., Yamamoto, K., Takahara, J. & Otomo, A. Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi separation of variables. J. Phys. A 41, 295401–295500 (2008). [14] Choi, H., Pile, D. F., Nam, S., Bartal, G. & Zhang, X. Compressing surface plasmons for nanoscale optical focusing. Opt. Express 17, 7519–7524 (2009). [15] Volkov, V. S. et al. Nanofocusing with channel plasmon polaritons. Nano Lett. 9, 1278–1282 (2009). [16] Jörg, M. et al. Nanomechanical control of an optical antenna. Nature Photonics. 2, 230–233 (2008) [17] Jens Dorfmüller, et al. Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures. Nano Letter Vol. 9, No. 6, 2372-2377 (2009) [18] Neubrech, F. et al. Resonances of individual metal nanowires in the infrared. Appl. Phys. Lett. 89, 253104 (2006). [19] Allione, M., Temnov, V. V., Fedutik, Y., Woggon, U. & Artemyev, M. V. Surface plasmon mediated interference phenomena in low-Q silver nanowire cavities. Nano Lett. 8, 31–35 (2008). [20] Miyazaki, H. T. & Kurokawa, Y. Controlled plasmon resonance in closed metal/insulator/metal nanocavities. Appl. Phys. Lett. 89, 211126 (2006). [21] Søndergaard, T., Beermann, J., Boltasseva, A. & Bozhevolnyi, S. I. Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration. Phys. Rev. B 77, 115420 (2008). [22] Hayes, C. L. & Van Duyne, R. P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 107, 7426–7433 (2003). [23] Liao, H., Nehl, C. L. & Hafner, J. H. Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1, 201–208 (2006). [24] Haes, A. & Van Duyne, R. P. A unifed view of propagating and localized surface plasmon resonance biosensors. Anal. Bioanal. Chem. 379, 920–930 (2004). [25] Bozhevolnyi, S. I. in Nanophotonics with Surface Plasmons (eds Shalaev, V. M. & Kawata, S.) 1–34 (Elsevier, 2007). [26] Sincerbox, G. T. & Gordon II, J. C. Small fast large-aperture light modulator using attenuated total refection. Appl. Opt. 20, 1491–1494 (1981). [27] Solgaard, O., Ho., F., Tackara, J. I. & Bloom, D. M. High frequency attenuated total internal refection light modulator. Appl. Phys. Lett. 61, 2500–2502 (1992). [28] Dicken, M. J. et al. Electrooptic modulation in thin flm barium titanate plasmonic interferometers. Nano Lett. 8, 4048–4052 (2008). [29] Dionne, J. A., Diest, K., Sweatlock, L. A. & Atwater, H. A. PlasMOStor: A metal-oxide–Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009). [30] MacDonald, K. F., Sámson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009). [31] Pacifci, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007). [32] Pala, R. A., Shimizu, K. T., Melosh, N. A. & Brongersma, M. L. A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett. 8, 1506–1510 (2008). [33] D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and Tineke Thio, Appl. Phys. Lett. 77, 1569 (2000). [34] J. Gómez Rivas, Nature Photonics 2, 137 (2008). [35] J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolívar, and H. Kurz, Phys. Rev. B 69, 155427 (2004). [36] T.-I. Jeon and D. Grischkowsky, Appl. Phys. Lett. 88, 061113 (2006). [37]J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, Phys. Rev. B 68, 201306(R) (2003). [38] H. Cao and A. Nahata, Opt. Express 12, 1004 (2004) [39] D. Qu, D. Grischkowsky, and W. Zhang, Opt. Lett. 29, 896 (2004). [40] F. J. G. de Abajo, R. Gómez-Medina, and J. J. Sáenz, Phys. Rev. E 72, 016608 (2005). [41] B. Hou, W. Wen, C. T. Chan, and P. Sheng, Appl. Phys. Lett. 89, 131917 (2006). [42] M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, Opt. Lett. 29, 2500 (2004). [43] F. Miyamaru, M. Tanaka, and M. Hangyo, Phys. Rev. B 74, 153416 (2006). [44] J. B. Pendry, L. Martín-Moreno, F. J. García-Vidal, Science 305, 847 (2004). [45] A. P. Hibbins, B. R. Evans, and J. R. Sambles, Science 308, 670 (2005). [46] C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, Nature Photonics 2, 175 (2008). [47] Surbhi Lal, Stephan Link and Naomi J. Halas , Nature Photonics 1, 641-648 (2007) [48] Dmitri K. Gramotnev and Sergey I. Bozhevolnyi Nature Photonics 4, 83-91 (2010) [49] Mark Fox, Optical properties of Solids, Oxford (2001) [50] Stefan A. Maier, Plasmonics: Fundamentals and Applications, Springer (2007) [51] Roger F. Harrington, Time-Harmonic Electromagnetic Fields (2001) [52] Haus H A, Waves And Fields In Optoelectronics ,Prentice-Hall (1984) [53] Handbook of Instrumental Techniques for Analytical Chemistry, Ch.15, edited by C. P. Sherman Hsu. [54] Y. H. Ye, Y. Wei Jiang , M. W. Tsai, Y. T. Chang, C. Y. Chen, D. C. Tzuang, Y. T. Wu and S. C. Lee , 2008, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter ”, Appl. Phys. Lett., 93 , 033113. [55] Y. H. Ye, Y. W. Jiang, M. W. Tsai, Y. T. Chang, C. Y. Chen, D. C. Tzuang, Y. T. Wu and S. C. Lee, 2008 “Coupling of surface plasmons in a Ag/SiO2/Ag plasmonic thermal emitter with grating on top Ag ”, Appl. Phys. Lett., 93, 263106 [56] Stéphane Collin, Fabrice Pardo, and Jean-Luc Pelouard, Opt Express 15, 4310-4320 (2007). [57] Chia-Yi Chen, Ming-Wei Tsai, Yu-Wei Jiang, Yi-Han Ye, Yi-Tsung Chang, and Si-Chen Lee, Appl. Phys. Lett. 91, 243111 (2007). [58] D. E. Palik, Handbook of Optical Constants of Solids (Academic, Boston, 1985s) [59] Ming-Wei Tsai, Tzu-Hung Chuang, Hsu-Yu Chang, and Si-Chen Lee, Appl. Phys. Lett 89, 093102(2006) [60] M. Sasanuma, J. Phys. Soc. Jpn. 64, 448 (1995). pp. 448-455 [61] A. Sweatlock, S. A. Maier, and H. A. Atwater, J. J. Penninkhof, A. Polman, Physical Review B 71, 235408 (2005) [62] Snorri Ingvarsson, Levente J. Klein, Yat-Yin Au, James A. Lacey, and Hendrik F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters”, Opt Express 15, 11249-11254 (2007) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46657 | - |
| dc.description.abstract | 本文在實驗及理論上探討以正方形金屬片陣列為上層之金屬/介電質/金屬三層結構中紅外頻段之光學特性。實驗數據顯示,當正方形金屬片尺寸增大時,結構中之侷域表面電漿模態波長會因而紅位移,且模態間距會減小。此結構所具之侷域表面電漿模態擁有如同線性天線角度圖案之反應,此特性可應用於製作廣角度之熱紅外線光源或光偵測元件。另一方面,實驗上觀察到經由調整正方形金屬片之間距造成的侷域表面電漿強度改變,及光柵耦合表面電漿/侷域表面電漿子之共存及耦合現象,可利用於此結構設計之最佳化。此外以長方形金屬片陣列為上層之金屬/介電質/金屬三層結構作為熱紅外線光源之熱輻射特性能在頻譜上產生更多模態。因對應侷域表面電漿子之方向不同,各模態均擁有特定之極化。將此元件與偏振片合成,可製成可選擇之多頻段熱紅外線光源。 | zh_TW |
| dc.description.abstract | The characteristics of surface plasmon polaritons (SPPs) in metal/insulator/metal (MIM) structures using square patch arrays as top layers in the mid infrared region have been studied theoretically and experimentally. By tuning the size of square metallic patches, the shifts of peak positions and mode spacing variations of localized surface plasmon polaritons (LSPPs) have been investigated. The angular pattern of the LSPP modes has provided an excellent method to design wide-angle illumination or light-sensing devices. Besides, the effect on dispersion relation of material dispersion and changing of distances between metallic patches has been investigated. The effect gives a guideline to optimize the performance of the structure. Another structure using rectangular patch arrays as top layers of MIM structures has been discovered to possess multi-spectral and polarization response in thermal radiation. Integrate the structure with a rotatable polarizer, the system can serve as a peak-switchable IR thermal emitter. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:21:24Z (GMT). No. of bitstreams: 1 ntu-99-R97943086-1.pdf: 8950007 bytes, checksum: 117e188d9ebfcc221b0f1b23cd4dc59b (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Contents ..................................................................................................................... V
Figure Captions ......................................................................................................... VII List of Tables ............................................................................................................. X Chapter 1 Introduction................................................................................................ 1 1.1 Plasmonics ........................................................................................................... 1 1.2 Motivations for Research Subjects....................................................................... 3 1.3 Outlines of The Thesis .......................................................................................... 4 Chapter 2 Fundamentals and Processes .................................................................... 6 2.1 The Fundamentals of Surface Plasmon Polaritons ............................................. 6 2.1.1 Free Electron Model of Metals ......................................................................... 6 2.1.2 Surface Plasmon Polaritons at Interfaces .......................................................... 7 2.1.3 Excitation of SPPs via Grating Coupling........................................................ 10 2.2 Processes Flow .................................................................................................. 13 2.2.1 Wafer Surface Cleaning .................................................................................. 13 2.2.2 Photolithography ............................................................................................. 13 2.2.3 Fabrication Processes of Plasmon Thermal Emitter ....................................... 13 2.3 Measurement Instruments .................................................................................. 16 2.3.1 Fourier Transform Infrared Spectrometer ....................................................... 16 2.3.2 Transmittance Measurement ........................................................................... 17 2.3.3 Reflectance Measurement ............................................................................... 17 2.3.4 Thermal emission measurement ..................................................................... 18 Chapter 3 Surface Plasmons in a Plasmonic IR Thermal Emitter with Square Patch Array as Top Metallic Structure ................................................................... 21 3.1 Localized Surface Plasmons in Square Metallic Patch Array MIM Structures 21 3.1.1 Basic Theorem of Fabry-Pèrot type LSPPs .................................................... 22 3.1.2 Experiments .................................................................................................... 23 3.1.3 Results and Discussion ................................................................................... 25 3.2 Influence of Distance between Square Metallic Patches on Dispersion Relations of PTEs ..................................................................................................................... 34 3.1.1 Experiments .................................................................................................... 34 3.2.2 Results and Discussion ................................................................................... 36 Chapter 4 Characteristics of Rectangle Metallic Patch Array MIM Structures . 44 4.1 Multi-Spectral IR Thermal Emitters with Rectangular Patch Arrays as Top Metallic Structure .................................................................................................... 44 4.1.1 Basic Theorem ................................................................................................ 45 4.1.2 Experiment ...................................................................................................... 45 4.1.3 Results and Discussion ................................................................................... 48 4.2 Polarization Characteristics of a MIM structure with Rectangular Patch Arrays as Top Metallic Structure......................................................................................... 55 4.2.1 Experiment ...................................................................................................... 56 4.2.2 Results and Discussion ................................................................................... 56 Chapter 5 Conclusions ............................................................................................... 63 Bibliography ............................................................................................................... 66 | |
| dc.language.iso | en | |
| dc.subject | 發光元件 | zh_TW |
| dc.subject | 表面電漿 | zh_TW |
| dc.subject | 紅外線 | zh_TW |
| dc.subject | optical antenna | en |
| dc.subject | thermal emitter | en |
| dc.subject | infrared | en |
| dc.subject | plasmonics | en |
| dc.title | 矩形片狀金屬陣列於金屬/介電質/金屬上層結構之中紅外光特性及極化性多頻譜熱紅外線發射器 | zh_TW |
| dc.title | Mid-Infrared Characteristics of Metal/Insulator/Metal Tri-layer Structures Using Rectangular Metallic Patch Array as Top Layer and Polarized Multi-Spectral IR Thermal Emitters | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張宏鈞(Hung-Chun Chang),蔡定平(Ding-Ping Tsai),陳敏璋(Miin-Jang Chen) | |
| dc.subject.keyword | 表面電漿,紅外線,發光元件, | zh_TW |
| dc.subject.keyword | plasmonics,infrared,thermal emitter,optical antenna, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 8.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
