Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46654
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王錦堂(Jin-Town Wang)
dc.contributor.authorYing-Chun Chenen
dc.contributor.author陳盈君zh_TW
dc.date.accessioned2021-06-15T05:21:13Z-
dc.date.available2013-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-07-20
dc.identifier.citation1. Podschun, R., and U. Ullmann. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11(4): 589-603.
2. Liu, Y. C., D. L. Cheng, and C. L. Lin. 1986. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch Intern Med. 146(10): 1913-1916.
3. Cheng, D. L., Y. C. Liu, M. Y. Yen, C. Y. Liu, and R. S. Wang. 1991. Septic metastatic lesions of pyogenic liver abscess. Their association with Klebsiella pneumoniae bacteremia in diabetic patients. Arch Intern Med. 151(8): 1557-1559.
4. Wang, J. H., Y. C. Liu, S. S. J. Lee, M. Y. Yen, Y. S. Chen, J. H. Wang, S. R. Wann, and H. H. Lin. 1998. Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis 26(6): 1434-1438.
5. Ko, W. C., D. L. Paterson, A. J. Sagnimeni, D. S. Hansen, A. V. Gottberg, S. Mohapatra, J. M. Casellas, H. Goossens, L. Mulazimoglu, G. Trenholme. K. P. Klugman, J. G. McCormack, and V. L. Yu. 2002. Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis 8: 160-166.
6. Chang, S. C., C. T. Fang, P. R. Hseuh, Y. C. Chen, and K. T. Luh. 2000. Klebsiella pneumoniae isolates causing liver abscess in Taiwan. Diagnostic Microbiology and Infectious Disease. 37(4): 279-284.
7. Fang, C. T., Y. C. Chen, S. C. Chang, W. Y. Sau, and K. T. Luh. 2000. Klebsiella pneumoniae meningitis: timing of antimicrobial therapy and prognosis. Oxford University Press. 93(1): 45-53.
8. Tang, L. M., and S. T. Chen. 1994. Klebsiella pneumoniae meningitis: prognostic factors. Scand J Infect Dis. 26(1): 95-102.
9. Dunne, W. M., Jr., 2002. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev. 15(2): 155-166.
10. Aparna, M. S., and S. Yadav. 2008. Biofilms: Microbes and Disease. The Brazilian Journal of Infectious Diseases. 12(6): 526-530.
11. Hall-Stoodley, L., J. W. Costerton, and P. Stoodley. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2(2): 95-108.
12. Warren, J. W. 1997. Catheter-associated urinary tract infections. Infect Dis Clin North Am. 11(3): 609-622
13. Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science. 284(5418): 1318-1322.
14. Watnick, P., and R. Kolter. 2000. Biofilm, city of microbes. J Bacteriol. 182(10): 2675-2679.
15. Donlan, R. M. 2001. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis. 33(8): 1387-1392.
16. Sauer, K., A. K. Camper, G. D. Ehrlich, J. W. Costerton, and D. G. Davies. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184(4): 1140-1154.
17. Schembri, M. A., K. Kjaergaard, and P. Klemm. 2003. Global gene expression in Escherichia coli biofilms. Mol. Microbiol. 48(1): 253-267.
18. Stanley, N. R., R. A. Britton, A. D. Grossman, and B. A. Lazazzera. 2003. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J. Bacteriol. 185(6): 1951-1957.
19. Oosthuizen, M. C., B. Steyn, J. Theron, P. Cosette, D. Lindsay, A. Von Holy, and V. S. Brözel. 2002. Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl. Environ. Microbiol. 68(6): 2770-2780.
20. Svensäter, G., J. Welin, J. C. Wilkins, D. Beighton, and I. R. Hamilton. 2001. Protein expression by planktonic and biofilm cells of Streptococcus mutans. FEMS microbiology letters. 205(1): 139-146.
21. Trémoulet, F., O. Duché, A. Namane, B. Martinie, J. C. Labadie, and European Listeria Genome Consortium. 2002. Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS microbiology letters. 210(1): 25-31.
22. Stanley, N. R., and B. A. Lazazzera. 2004. Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol. 52(4): 917-24.
23. Pratt, L. A., and R. Kolter. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol. 30(2): 285-93.
24. Touhami, A., M. H. Jericho, J. M. Boyd, and T. J. Beveridge. 2006. Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili by using atomic force microscopy. J Bacteriol. 188(2): 370-377.
25. Kurtz, H. D., Jr., and J. Smith. 1992. Analysis of a Caulobacter crescentus gene cluster involved in attachment of the holdfast to the cell. J Bacteriol. 174(3): 687-694.
26. Barbara, V., M. Chen, R. J. Crawford, and E. P. Ivanova. 2009. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules. 14(7): 2535-2554.
27. Christensen, G. D., W. A. Simpson, A. L. Bisno, and E. H. Beachey. 1982. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 37(1): 318-326.
28. Miller, M. B., and B. L. Bassler. 2001. Quorum Sensing In Bacteria. Annu. Rev. Microbiol. 55: 165-199.
29. Lee, S. F., Y. H. Li, and G. H. Bowden. 1996. Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity. Infect Immun 64(3): 1035-1038.
30. Anderl, J. N., M. J. Franklin, and P. S. Stewart. 2000. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 44(7): 1818-1824.
31. Zahller, J. and P. S. Stewart. 2002. Transmission electron microscopic study of antibiotic action on Klebsiella pneumoniae biofilm. Antimicrob Agents Chemother. 46(8): 2679-2683.
32. Balestrino, D., J. A. Haagensen, C. Rich, and C. Forestier. 2005. Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J Bacteriol. 187(8): 2870-2880.
33. Schembri, M.A., D. Dalsgaard, and P. Klemm. 2004. Capsule shields the function of short bacterial adhesins. J Bacteriol. 186(5): 1249–1257.
34. Clegg, S., and G. F. Gerlach. 1987. Enterobacterial fimbriae. J. Bacteriol. 169(3): 934-938.
35. Tarkkanen, A. M., R. Virkola, S. Clegg, and T. K. Korhonen. 1997. Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. Infect. Immun. 65(4): 1546-1549.
36. Langstraat, J., M. Bohse, and S. Clegg. 2001. Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation. Infect Immun. 69(9): 5805-5812.
37. Jagnow, J., and S. Clegg. 2003. Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology. 149(9): 2397-2405.
38. Boddicker, J. D., R. A. Anderson, J. Jagnow, and S. Clegg. 2006. Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect. Immun. 74(8): 4590-4597.
39. Balestrino, D., J. M. Ghigo, N. Charbonnel, J. A. J. Haagensen, and C, Forestier. 2008. The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol. 10(3): 685-701.
40. O'Toole, G. A., and R. Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 30(2): 295-304.
41. Link, A. J., D. Phillips, and G. M. Church. 1997. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol. 179(20): 6228-6237.
42. Kornberg, H. L., and Richard E. Reeves. 1972. Inducible Phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli. Biochem J. 128(5): 1339-1344.
43. LeBlanc, D. J., V. L.Crow, L. N. Lee, and C. F. Garon. 1979. Influence of the Lactose plasmid on the metabolism of galactose by Streptococcus lactis. J Bacteriol. 137(8): 878-884.
44. Reed, L. J., and H. Muench. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27: 493-497.
45. Choi, S.H., and E.P. Greenberg. 1991. The C-terminal region of the Vibrio fischeri LuxR protein contains an inducerindependent lux gene activating domain. Proceedings of the National Academy of Sciences of the United States of America. 88(24): 11115-11119.
46. Shadel, G. S., R. Young, and T. O. Baldwin. 1990. Use of regulated cell lysis in a lethal genetic selection in Escherichia coli: identification of the autoinducer-binding region of the LuxR protein from Vibrio fischeri ATCC 7744. J. Bacteriol. 172(7): 3980-3987.
47. Barrangou, R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero, and P. Horvath. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315(5819):1650-1651.
48. Lengeler, J. W., K. Jahreis, and U. F. Wehmeier. 1994. Enzymes II of the phosphoenolpyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochimica et biophysica acta. 1188(1-2): 1-28.
49. Postma, P. W., J. W. Lengeler, and G. R. Jacobson. 1993. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57(3): 543-594.
50. Saraceni-Richards, C. A., and G. R Jacobson. 1997. A conserved glutamate residue, Glu-257, is important for substrate binding and transport by the Escherichia coli mannitol permease. J Bacteriol. 179(4): 1135-1142.
51. Buhr, A., G. A. Daniels, and B. Erni. 1992. The glucose transporter of Escherichia coli. Mutants with impaired translocation activity that retains phosphorylation activity. J Biol Chem. 267(6): 3847-3851.
52. Ajdić, D., and V. T. T. Pham. 2007. Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays. J Bacteriol. 189(14): 5049-5059.
53. Loo, C. Y., K. Mitrakul, I. B. Voss, C. V. Hughes, and N. Ganeshkumar. 2003. Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation. J. Bacteriol. 185(21): 6241-6254.
54. Kiliç﹐, A. O., L. Tao, Y. Zhang, Y. Lei, A. Khammanivong, and M. C. Herzberg. 2004. Involvement of Streptococcus gordonii beta-glucoside metabolismsystems in adhesion, biofilm formation, and in vivo gene expression. J. Bacteriol. 186(13): 4246-4253
55. Knobloch, J. K., M. Nedelmann, K. Kiel, K. Bartscht, M. A. Horstkotte, S. Dobinsky, and H. Rohde. 2003. Establishment of an arbitrary PCR for rapid identification of Tn917 insertion sites in Staphylococcus epidermidis: characterization of biofilm-negative and nonmucoid mutants. Appl Environ Microbiol. 69(10): 5812-5818.
56. Houot, L., and P. I. Watnick. 2008. A novel role for enzyme I of the Vibrio cholerae phosphoenolpyruvate phosphotransferase system in regulation of growth in a biofilm. J Bacteriol. 190(1): 311-320.
57. Wu, K. M., L. H. Li, J. J. Yan, N. Tsao, T. L. Liao, H.C. Tsai, C. P. Fung, H. J. Chen, Y. M. Liu, J. T. Wang, C. T. Fang, S. C. Chang, H. Y. Shu, T. T. Liu, Y. T. Chen, Y. R. Shiau, T. L. Lauderdale, I. J. Su, R. Kirby, and S. F. Tsai. 2009. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol. 191(14): 4492-4501.
58. Abranches, J., Yi-Ywan M. Chen, and R. A. Burne. 2003. Characterization of Streptococcus mutans Strains Deficient in EIIABMan of the Sugar Phosphotransferase System. Applied and Environmental Microbiology. 69(8): 4760-4769.
59. Abranches, J., M. M. Candella, Z. T. Wen, H. V. Baker, and R. A. Burne. 2006. Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans. J Bacteriol. 188(11): 3748-3756.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46654-
dc.description.abstract克雷伯氏肺炎桿菌(Klebsiella pneumoniae)為革蘭氏陰性桿菌,屬於腸內菌科(Enterobacteriacea),常引起泌尿道感染、呼吸道感染及菌血症等院內感染,也會對免疫機能不全的患者造成肺炎和敗血性休克,為一重要的伺機性感染病原菌(opportunistic pathogen)。生物膜(biofilm)在許多細菌的致病過程扮演重要角色,克雷伯氏肺炎桿菌亦可形成生物膜以增加對抗生素、抗菌劑及宿主免疫系統反應的抵抗力。本實驗室先前已利用跳躍基因(transposon)建構二千五百株的克雷伯氏肺炎桿菌NTUH-K2044菌株之突變株庫(mutant library),因此我們藉由生物膜微量培養盤試驗(biofilm microtiter plate assay)來篩選生物膜生成量有明顯下降(down-regulation)的突變株。過程中篩選出20株生物膜生成量有明顯減少的突變菌株,並挑選NTUH-K2044染色體DNA上之醣類磷酸轉移酶系統(carbohydrate phosphortransferase system, PTS system cellobiose-specific IIC component) celB 基因被嵌入跳躍基因之突變株NTUH-K12-16進行探討。本實驗採用無抗生素基因標記的方式剔除基因,將上述基因的剔除株(unmarked deletion mutant)與其染色體互補株(chromosome complementation)進行比較,NTUH-K2044ΔcelB基因剔除菌株證實影響生物膜生成量下降是由於喪失 celB基因功能,而非染色體上其他自發性突變(spontaneous mutation)所造成。在LB培養液中,基因剔除菌株的生長速率與野生株無差異,但形成生物膜的能力下降;在50ppm纖維雙糖M9最基本培養液(cellobiose M9 minimal medium)中,基因剔除菌株的生長速率落後於野生菌株。在LB培養液與50ppm纖維雙糖M9最基本培養液的纖維雙糖的醣類磷酸轉移系統活性分析(cellobiose-specific PTS activity assay),NTUH-K2044ΔcelB基因剔除株的活性均較野生株降低。基因剔除株在小鼠模式的致病力也較野生株降低。顯示克雷伯氏肺炎桿菌的 celB 基因可利用纖維雙糖為碳源進行生長代謝,促進生物膜的形成,並提高致病力。zh_TW
dc.description.abstractKlebsiella pneumoniae is a Gram-negative bacillus belonging to Enterobacteriace, which has become the predominant pathogen causing community acquired pyogenic liver abscess (PLA). The formation of biofilm benefits bacteria to colonize, and has been known to involve in the increasing resistance to antibiotic, antibacterial, and host immune responses. In order to explore the genes related to the biofilm formation in K. pneumoniae, biofilm down-regulation mutants were screened by microtiter plate assay using a NTUH-K2044 transposon mutant library. Twenty mutants revealed decreased biofilm formation compared with wild-type. One of the mutants was disrupted in celB, the putative cellobiose-specific IIC component of carbohydrate phosphotransferase system (PTS system). Unmarked deletion and chromosomal complementation of celB confirmed that celB was responsible for the biofilm formation by microtiter plate assay and slide culture. In 50ppm cellobiose minimal medium, the growth rate of NTUH-K2044ΔcelB deletion mutant showed a significant delay compared with that of wild-type. Cellobiose-specific PTS activity of deletion mutant grown in LB broth and 50ppm cellobiose minimal medium were markedly lower than that of the wild-type strain grown under the same conditions, indicating that celB is involved in cellobiose transport. Virulence of deletion mutant was also lower than wild-type strain in the murine model of intragastrical infection. Therefore, celB of K. pneumoniae contributes to biofilm formation and virulence may through the metabolism of cellobiose.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:21:13Z (GMT). No. of bitstreams: 1
ntu-99-R95445129-1.pdf: 1074195 bytes, checksum: cc34626e963d4c4714ed4695b7f07db3 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書........................................................................................Ⅰ
誌謝................................................................................................................Ⅱ
中文摘要........................................................................................................Ⅲ
英文摘要........................................................................................................Ⅴ
圖目錄............................................................................................................Ⅷ
表目錄............................................................................................................Ⅹ
第一章 諸論................................................................................................... 1
第二章 材料與方法........................................................................................5
1. 細菌菌株與質體...............................................................................5
2. 生物膜微量培養盤試驗(biofilm microtiter plate assay)...........5
3. 突變株基因序列分析.......................................................................6
4. 建構克雷伯氏肺炎桿菌基因剔除株...............................................7
5. 建構克雷伯氏肺炎桿菌基因剔除株的染色體互補(chromosome complementation)............................................................................9
6. 測量生長速率與醣類特異性(sugar-specific)..............................10
7. 玻片培養(slide culture)觀察生物膜生成量.................................12
8. 醣類磷酸轉移系統活性分析(PTS activity assay)....................12
9. 萃取克雷伯氏肺炎桿菌total RNA................................................14
10. 反轉錄聚合酶鏈反應(RT-PCR)...................................................15
11. 聚合酶鏈反應(PCR)比較celB在不同菌株的分佈............... 15
12. 動物實驗.........................................................................................16
第三章 結果................................................................................................17
1. 生物膜微量培養盤試驗篩選克雷伯氏肺炎桿菌突變庫...........17
2. 確認基因剔除對生物膜生成量的影響........................................19
3. 玻片培養確認基因剔除株的生物膜生長情形............................20
4. 反轉錄聚合酶鏈反應分析克雷伯氏肺炎桿菌celB轉錄單位(transcriptional unit)...................................................................21
5. 建構染色體株互補確認celB基因影響生物膜生成..................21
6. 醣類特異性生長測試....................................................................21
7. 醣類磷酸轉移系統活性分析........................................................22
8. 聚合酶鏈反應確認celB在各菌株的分佈....................................24
9. 動物實驗........................................................................................24
第四章 總結與討論....................................................................................26
第五章 參考文獻........................................................................................57
dc.language.isozh-TW
dc.subject纖維雙糖zh_TW
dc.subject克雷伯氏肺炎桿菌zh_TW
dc.subject生物膜微量培養盤試驗zh_TW
dc.subject生物膜zh_TW
dc.subjectcelB基因zh_TW
dc.subject醣類磷酸轉移系統zh_TW
dc.subjectbiofilmen
dc.subjectcellobioseen
dc.subjectphosphotransferase system (PTS)en
dc.subjectcelBen
dc.subjectKlebsiella pneumoniaeen
dc.subjectbiofilm microtiter plate assayen
dc.title克雷伯氏肺炎桿菌 celB 之功能及對生物膜生成與致病力之影響zh_TW
dc.titleFunction of celB and its association with biofilm formation and virulence in Klebsiella pneumoniaeen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee董馨蓮(Shin-Lian Doong),鄧麗珍(Lee-Jeng Teng)
dc.subject.keyword克雷伯氏肺炎桿菌,生物膜微量培養盤試驗,生物膜,celB基因,醣類磷酸轉移系統,纖維雙糖,zh_TW
dc.subject.keywordKlebsiella pneumoniae,biofilm microtiter plate assay,biofilm,celB,phosphotransferase system (PTS),cellobiose,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2010-07-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved