請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46647完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔣本基 | |
| dc.contributor.author | Yu-Cheng Chang | en |
| dc.contributor.author | 張育誠 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:20:49Z | - |
| dc.date.available | 2020-07-19 | |
| dc.date.copyright | 2010-07-21 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-19 | |
| dc.identifier.citation | Bellona, C., Drewes, J.E., Xu, P., Amy, G., 2004. Factors affecting the rejection of organic solutes during NF/RO treatment--a literature review. Water Research 38, 2795-2809.
Bowen, W.R., Calvo, J.I., Hern嫕dez, A., 1995. Steps of membrane blocking in flux decline during protein microfiltration. Journal of Membrane Science 101, 153-165. Bowen, W.R., Mohammad, A.W., Hilal, N., 1997. Characterisation of nanofiltration membranes for predictive purposes -- use of salts, uncharged solutes and atomic force microscopy. Journal of Membrane Science 126, 91-105. Childress, A.E., Elimelech, M., 1996. Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. Journal of Membrane Science 119, 253-268. Comerton, A.M., Andrews, R.C., Bagley, D.M., Hao, C., 2008. The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties. Journal of Membrane Science 313, 323-335. Contreras, A.E., Kim, A., Li, Q., 2009. Combined fouling of nanofiltration membranes: Mechanisms and effect of organic matter. Journal of Membrane Science 327, 87-95. De Witte, J.-P., 1997. Surface water potabilisation by means of a novel nanofiltration element. Desalination 108, 153-157. Drewes, J.E., Bellona, C., Oedekoven, M., Xu, P., Kim, T.U., Amy, G., 2005. Rejection of wastewater-derived micropollutants in high-pressure membrane applications leading to indirect potable reuse. Environ. Prog. 24, 400-409. Enick, O.V., Moore, M.M., 2007. Assessing the assessments: Pharmaceuticals in the environment. Environmental Impact Assessment Review 27, 707-729. Garba, Y., Taha, S., Gondrexon, N., Cabon, J., Dorange, G., 2000. Mechanisms involved in cadmium salts transport through a nanofiltration membrane: characterization and distribution. Journal of Membrane Science 168, 135-141. Heberer, T., 2002. Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology 266, 175-189. Hong, S., Elimelech, M., 1997. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. Journal of Membrane Science 132, 159-181. Jarusutthirak, C., Mattaraj, S., Jiraratananon, R., 2007. Factors affecting nanofiltration performances in natural organic matter rejection and flux decline. Separation and Purification Technology 58, 68-75. Kim, Y., Choi, K., Jung, J., Park, S., Kim, P.-G., Park, J., 2007. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environment International 33, 370-375. Kimura, K., Amy, G., Drewes, J., Watanabe, Y., 2003a. Adsorption of hydrophobic compounds onto NF/RO membranes: an artifact leading to overestimation of rejection. Journal of Membrane Science 221, 89-101. Kimura, K., Amy, G., Drewes, J.E., Heberer, T., Kim, T.-U., Watanabe, Y., 2003b. Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. Journal of Membrane Science 227, 113-121. Lin, A.Y.-C., Tsai, Y.-T., 2009. Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of The Total Environment 407, 3793-3802. Lin, A.Y.-C., Yu, T.-H., Lin, C.-F., 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere 74, 131-141. Madaeni, S.S., 1999. The application of membrane technology for water disinfection. Water Research 33, 301-308. Mozia, S., Tomaszewska, M., Morawski, A.W., Studies on the effect of humic acids and phenol on adsorption-ultrafiltration process performance. Water Research 39, 501-509. Murthy, Z.V.P., Gupta, S.K., 1997. Estimation of mass transfer coefficient using a combined nonlinear membrane transport and film theory model. Desalination 109, 39-49. Nghiem, L.D., Coleman, P.J., 2008. NF/RO filtration of the hydrophobic ionogenic compound triclosan: Transport mechanisms and the influence of membrane fouling. Separation and Purification Technology 62, 709-716. Nghiem, L.D., Hawkes, S., 2007. Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): Mechanisms and role of membrane pore size. Separation and Purification Technology 57, 176-184. Nghiem, L.D., Hawkes, S., 2009. Effects of membrane fouling on the nanofiltration of trace organic contaminants. Desalination 236, 273-281. Nghiem, L.D., Schafer, A.I., Elimelech, M., 2005. Pharmaceutical Retention Mechanisms by Nanofiltration Membranes. Environmental Science & Technology 39, 7698-7705. Nghiem, L.D., Vogel, D., Khan, S., 2008. Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator. Water Research 42, 4049-4058. Pontalier, P.-Y., Ismail, A., Ghoul, M., 1997. Mechanisms for the selective rejection of solutes in nanofiltration membranes. Separation and Purification Technology 12, 175-181. Radjenovic, J., Petrovic, M., Ventura, F., Barcel, D., 2008. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Research 42, 3601-3610. Robert Reiss, C., Taylor, J.S., Robert, C., 1999. Surface water treatment using nanofiltration--pilot testing results and design considerations. Desalination 125, 97-112. Schwab, B.W., Hayes, E.P., Fiori, J.M., Mastrocco, F.J., Roden, N.M., Cragin, D., Meyerhoff, R.D., D'Aco, V.J., Anderson, P.D., 2005. Human pharmaceuticals in US surface waters: A human health risk assessment. Regulatory Toxicology and Pharmacology 42, 296-312. Van der Bruggen, B., M鄚tt酺i, M., Nystr闣, M., 2008. Drawbacks of applying nanofiltration and how to avoid them: A review. Separation and Purification Technology 63, 251-263. van Paassen, J.A.M., Kruithof, J.C., Bakker, S.M., Kegel, F.S., 1998. Integrated multi-objective membrane systems for surface water treatment: pre-treatment of nanofiltration by riverbank filtration and conventional ground water treatment. Desalination 118, 239-248. Verliefde, A.R.D., Cornelissen, E.R., Heijman, S.G.J., Petrinic, I., Luxbacher, T., Amy, G.L., Van der Bruggen, B., van Dijk, J.C., 2009. Influence of membrane fouling by (pretreated) surface water on rejection of pharmaceutically active compounds (PhACs) by nanofiltration membranes. Journal of Membrane Science 330, 90-103. Wang, X.-L., Tsuru, T., Nakao, S.-i., Kimura, S., 1997. The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes. Journal of Membrane Science 135, 19-32. Xu, P., Drewes, J.E., Kim, T.-U., Bellona, C., Amy, G., 2006. Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. Journal of Membrane Science 279, 165-175. Yangali-Quintanilla, V., Sadmani, A., McConville, M., Kennedy, M., Amy, G., 2009. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes. Water Research 43, 2349-2362. Yoon, S.-H., Lee, C.-H., Kim, K.-J., Fane, A.G., 1998. Effect of calcium ion on the fouling of nanofilter by humic acid in drinking water production. Water Research 32, 2180-2186. Yoon, Y., Amy, G., Cho, J., Her, N., 2005. Effects of retained natural organic matter (NOM) on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration. Desalination 173, 209-221. Yoon, Y., Westerhoff, P., Snyder, S.A., Wert, E.C., 2006. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. Journal of Membrane Science 270, 88-100. Yoon, Y., Westerhoff, P., Snyder, S.A., Wert, E.C., Yoon, J., 2007. Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes. Desalination 202, 16-23. Zazouli, M.A., Susanto, H., Nasseri, S., Ulbricht, M., 2009. Influences of solution chemistry and polymeric natural organic matter on the removal of aquatic pharmaceutical residuals by nanofiltration. Water Research 43, 3270-3280. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46647 | - |
| dc.description.abstract | 近年來,薄膜處理技術被廣泛運用在淨水場以去除特定汙染物,如溶解性固體、天然有機物、無機離子及毒性物質。本研究主要以三種PPCP及兩種奈米薄膜作為對象研究奈米薄膜去除PPCP之現象,並藉此找出PPCP及薄膜特性對於效率及去除機制之影響,利用Hermia模式來判斷積垢機制。本研究使用之薄膜機組為平板掃流式,並在不同操作條件下(pH、壓力、掃流速度及積垢物質)觀察薄膜通量衰減情形和出水品質。利用HPLC及TOC分析出流水濃度,並使用SEM及AFM分析薄膜表面。最後使用反應曲面法(responds surface method)根據實驗結果求出本實驗之最佳操作條件。
三種PPCP之去除率和薄膜之MWCO有正相關,NF270之去除率階高於NTR7450,顯示size exclusion在三種PPCP之去除階存在。在高pH值時sulfamethoxazole及triclosan之帶電性由中性便為負電性,因而electrostatic exclusion存在,使得sulfmethoxazole及triclosan之去除率提升。 根據Hermia模式預測,標準阻塞機制對於兩種模之通量衰減無法解釋,積垢物質並未進入到薄膜孔洞內而被吸附於孔內膜壁上,機構形成可能同時存在樹種機制,包括,完全阻塞、中間阻塞及濾餅生成機制。 結果顯示NF270及 NTR7450兩種積垢薄膜會提高acetaminophen之去除率,對於sulfamethoxazole則會使去除率下降,triclosan在NTR7450積垢後去除率會較未積垢之薄膜下降而在NF270積垢與未積垢並無明顯變化。對於acetaminophen之主要去除機制為size exclusion,sulfamethoxazole為size exclusion及electrostatic exclusion而triclosan則包含了三種去除機制。 積垢會改變薄膜表面特性,造成積垢後之薄膜去除效率與未積垢薄膜有所差別(可能上升或下降)。由於實驗中之三種藥物之物化特性不同其去除機制也有所不同,因而造成三種藥物在積垢和未積垢薄膜中去除率變化的差異性。 利用實驗結果及反應曲面應用程式推算結果顯示,在本奈米薄膜處理程序其最佳操作條件為操作壓力在100psi,掃流速度在0.32m/s及進流pH在10時。在此操作條件下,其預估之通量減為5.6%,PPCP之去除效率約為98.5%。 | zh_TW |
| dc.description.abstract | Membrane or pressure-driven processes are used to remove contaminants such as dissolved solids, nature organic matter, inorganic ions, and some other hazardous compounds from water. This research investigated the effects of solute and membrane characteristics on the rejection and flux decline at various pH levels, transmembrane pressure, cross-flow velocity, and at foulant. Filtration was conducted with a cross-flow module using membrane (NF270 and NTR7450) in plate form. The concentration of effluent and membrane properties were determined using instruments such as HPLC, TOC, SEM, and AFM. The optimal operation conditions of NF filtration processes were determined using the response surface method (RSM).
There are positive correlations between rejection of target compounds and the MWCO of membrane. The rejection by NF270 was always higher than that by NTR7450 which indicated that size exclusion could be the removal mechanism of the three target compounds. At high pH, both sulfamethoxazole and triclosan are negatively charged, which implies that electrostatic exclusion could be the removal mechanism. Standard blocking was not the main fouling mechanism for both membranes, which indicated that the molecular size of foulant in the feed solution might be larger than that of the membrane pore. Membrane fouling could be brought by the a combination of several fouling mechanisms, i.e, complete blocking, intermediate blocking, and gel layer formation. In the presence of humic acid and calcium ions, the rejection of acetaminophen by both NF270 and NTR7450 membranes was increased whereas opposite results were observed for sulfamethoxazole. The rejection of ticlosan decreased with operation time prior to 6 hrs which could be attributed to adsorption. The fouling layer may modify the surface properties of membrane which leads to different degrees of performance. The difference in the rejection of the three target compounds brought by distinct removal mechanisms can be attributed to their respective physic-chemical properties. The optimum operating condition determined by the RSM was found to be at TMP of 100 psi, cross-flow velocity of 0.32 m/s, and pH 10.0. Under the best operating condition the performance was: 98.5% of rejection and 5.6% of flux decline. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:20:49Z (GMT). No. of bitstreams: 1 ntu-99-R97541106-1.pdf: 1541243 bytes, checksum: c899df98babee13ebff2db59ebbe0b32 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Abstract I
摘要 III List of Table 1 Chapter 1 Introduction 4 1-1 Background 4 1-2 Objectives 7 Chapter 2 Literature Review 8 2-1 Pharmaceuticals and personal care products in the environment 8 2-2 EDC/PPCP Removal by Nanofiltration Membranes 10 2-3 Parameters Affecting the Performance of NF Process 12 2-3-1 Characteristics of NF membrane 12 2-3-2 Operating conditions 13 2-3-3 Characteristics of feed solution 16 2-4 Membrane fouling 17 2-4-1Membrane fouling type 18 2-4-2 Mechanisms of membrane fouling 19 2-4-3 Predicting the fouling of NF 21 2-5 Rejection Mechanisms and Predicting Models of NF Membranes 24 2-5-1 NF rejection mechanisms 24 2-5-2 The transport mechanisms of NF membrane 25 2-5-3 NF predicting model 26 Chapter 3 Materials and Methods 31 3-1 Research Flowchart 31 3-2 Membranes 32 3-3 Target Compounds 32 3-4 Filtration Test Unit 34 3-5 Experimental Design 37 3-6 Analytical Methods 41 Chapter 4 Results and Discussions 46 4-1 Effect of Solute Characteristics on Rejection 46 4-1-1 Rejection of target compounds by clean membrane 46 4-1-2 Influence of pH on rejection of target compounds 48 4-1-3 Summary 51 4-2 Influence of Membrane Fouling on the Nanofiltration of Target Compounds 52 4-2-1 Membrane fouling 52 4-2-2 Prediction of membrane fouling 55 4-2-3 Effect of fouling on membrane surface properties 57 4-2-4 Effect of fouling on target compounds rejection 63 4-2-5 Summary 69 4-3 Optimization of the NF270 and NTR7450 Membrane Process 71 4-3-1 Influence of operating condition on NF membrane filtration 71 4-3-2 Optimal operation condition 77 4-4 Modeling Target Compound Rejections 82 4-4-1 Model development 83 4-4-2 Input parameters 84 4-4-3 Model validation 87 4-4-4 Summary 91 Chapter 5 Conclusions and Recommendations 92 5-1 Conclusions 92 5-2 Recommendations 94 Chapter 6 Reference 95 Appendix 99 | |
| dc.language.iso | en | |
| dc.subject | 奈米薄膜 | zh_TW |
| dc.subject | PPCP | zh_TW |
| dc.subject | 反應曲面法 | zh_TW |
| dc.subject | Sulfamethoxazole | en |
| dc.subject | Triclosan) | en |
| dc.subject | PPCP (Acetaminophen | en |
| dc.subject | Nanofiltration (NF270 and NTR7450) | en |
| dc.subject | Removal mechanisms | en |
| dc.subject | Responds surface methods (RSM) | en |
| dc.title | 比較積垢與未積垢薄膜對於藥物及個人保健用品之去除率及通量之影響 | zh_TW |
| dc.title | Effect of Fouled and Non-fouled membranes on Flux and the Rejection of Pharmaceuticals and Personal Care Products | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張怡怡,黃金寶,顧洋,曾迪華 | |
| dc.subject.keyword | 奈米薄膜,PPCP,反應曲面法, | zh_TW |
| dc.subject.keyword | Nanofiltration (NF270 and NTR7450),PPCP (Acetaminophen, Sulfamethoxazole, Triclosan),Removal mechanisms,Responds surface methods (RSM), | en |
| dc.relation.page | 108 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
