Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46643
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王佩華
dc.contributor.authorPo-An Tuen
dc.contributor.author凃柏安zh_TW
dc.date.accessioned2021-06-15T05:20:34Z-
dc.date.available2010-08-05
dc.date.copyright2010-08-05
dc.date.issued2010
dc.date.submitted2010-07-19
dc.identifier.citationAmthor, H., A. Otto, R. Macharia, I. McKinnell, and K. Patel. 2006. Myostatin imposes reversible quiescence on embryonic muscle precursors. Dev. Dyn. 235: 672-680.
Amthor, H., G. Nicholas, I. McKinnell, C. F. Kemp, M. Sharma, R. Kambadur, and K. Patel. 2004. Follistatin complexes myostatin and antagonizes myostatin-mediated inhibition of myogenesis. Dev. Biol. 270: 19-30.
Amthor, H., R. Macharia, R. Navarrete, M. Schuelke, S. C. Brown, A. Otto, T. Voit, F. Muntoni, G. Vrbova, T. Partridge, P. Zammit, L. Bunger, and K. Patel. 2007. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc. Natl. Acad. Sci. U.S.A. 104: 1835-1840.
Anderson, J. E., and A. C. Wozniak. 2004. Satellite cell activation on fibers: modeling events in vivo – an invited review. Can. J. Physiol. Pharmacol. 82: 300-310.
AOAC. 1984. Official Methods of Analysis, 19th ed. Assoc. of Offic. Analyt. Chemists, Arlington, VA.
Artaza, J. N., S. Bhasin, T. R. Magee, S. Reisz-Porszasz, R. Shen, N. P. Groome, M. M. Fareez, and N. F. Gonzalez-Cadavid. 2005. Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells. Endocrinology 146: 3547-3557.
Berry, C., M. Thomas, B. Langley, M. Sharma, and R. Kambadur. 2002. Single cysteine to tyrosine transition inactivates the growth inhibitory function of Piedmontese myostatin. Am. J. Physiol. Cell Physiol. 283: C135-C141.
Black, B. L., and E. N. Olson. 1998. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14: 167-196.
Bogdanovich, S., T. O. Krag, E. R. Barton, L. D. Morris, L. A. Whittemore, R. S. Ahima, and T. S. Khurana. 2002. Functional improvement of dystrophic muscle by myostatin blockade. Nature 420: 418-421.
Casas, E., G. L. Bennett, T. P. Smith, and L. V. Cundiff. 2004. Association of myostatin on early calf mortality, growth, and carcass composition traits in crossbred cattle. J. Anim. Sci. 82: 2913-2918.
Casas, E., R. T. Stone, J. W. Keele, S. D. Shackelford, S. M. Kappes, and M. Koohmaraie. 2001. A comprehensive search for quantitative trait loci affecting growth and carcass composition of cattle segregating alternative forms of the myostatin gene. J. Anim. Sci. 79: 854-860.
Charge, S. B. and M. A. Rudnicki. 2004. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84: 209-238.
Charlier, C., W. Coppieters, F. Farnir, L. Grobet, P. L. Leroy, C. Michaux, M. Mni, A. Schwers, P. Vanmanshoven, R. Hanset, and M. Georges. 1995. The mh gene causing double-muscling in cattle maps to bovine Chromosome 2. Mamm. Genome 6: 788-792.
Clop, A., F. Marcq, H. Takeda, D. Pirottin, X. Tordoir, B. Bibe, J. Bouix, F. Caiment, J. M. Elsen, F. Eychenne, C. Larzul, E. Laville, F. Meish, D. Milenkovic, J. Tobin, C. Charlier, and M. Georges. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38: 813-818.
Cossu, G., and S. Biressi. 2005. Satellite cells, myoblasts and other occasional myogenic progenitors: possible origin, phenotypic features and role in muscle regeneration. Semin. Cell Dev. Biol. 16: 623-631.
Culley, G. 1807. Observation in livestock, 4th ed., G. Wood-fall, London.
Du, R., Y. F. Chen, X. R. An, X. Y. Yang, Y. Leizhang, X. L. Yuan, L. M. Chen, and J. Qin. 2005. Cloning and sequence analysis of myostatin promoter in sheep. DNA Seq. 16: 412-417.
Dunner, S., M. E. Miranda, Y. Amigues, J. Canon, M. Georges, R. Hanset, J. Williams, and F. Menissier. 2003. Haplotype diversity of the myostatin gene among beef cattle breeds. Genet. Sel. Evol. 35: 103-118.
Feldman, B. J., R. S. Streeper, R. V. Farese Jr, and K. R. Yamamoto. 2006. Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proc. Natl. Acad. Sci. U.S.A. 103: 15675-15680.
Feng, X. H., and R. Derynck. 2005. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21: 659-693.
Figeac, N., M. Daczewska, C. Marcelle, and K. Jagla. 2007. Muscle stem cells and model systems for their investigation. Dev. Dyn. 236: 3332-3342.
Gaussin, V., and C. Depre. 2005. Myostatin, the cardiac chalone of insulinlike growth factor-1. Cardiovasc. Res. 68: 347-349.
Grisolia, A. B., G. T. D. Angelo, L. R. Porto Neto, F. Siqueira, and J. F. Garcia. 2009. Myostatin (GDF8) single nucleotide polymorphism in Nellore cattle. Genet. Mol. Res. 8: 822-830.
Grobet, L., D. Poncelet, L. J. Royo, B. Brouwers, D. Pirottin, C. Mi-chaux, F. Me’nissier, M. Zanotti, S. Dunner, and M. Georges. 1998. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm. Genome 9: 210-213.
Grobet, L., L. J. Martin, D. Poncelet, D. Pirottin, B. Brouwers, J. Riquet, A. Schoeberlein, S. Dunner, F. Menissier, J. Massabanda, R. Fries, R. Hanset, and M. Georges. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17: 71-74.
Gu, Z., Y. Zhang, P. Shi, Y. P. Zhang, D. Zhu, and H. Li. 2004. Comparison of avian myostatin genes. Anim. Genet. 35: 470-472.
Guimaraes, S. E. F., C. H. Stahl, S. M. Lonergan, B. Geiger, and M. F. Rothschild. 2007. Myostatin promoter analysis and expression pattern in pigs. Livest. Sci. 112: 143-150.
Guo, W., J. Flanagan, R. Jasuja, J. Kirkland, L. Jiang, and S. Bhasin. 2008. The effects of myostatin on adipogenic differentiation of human bone marrow-derived mesenchymal stem cells are mediated through cross-communication between Smad3 and Wnt/β-catenin signaling pathways. J. Biol. Chem. 283: 9136-9145.
Hamilton, R. J. and S. Hamilton. 1992. Extraction of lipids and derivative formation. in Lipid Analysis: A Practical Approach. (pp. 13-63). IRL Press.
Hanset, R., C. Michaux, and A. Stasse. 1987. Relationships between growth rate, carcass composition, feed intake, feed conversion ratio and income in four biological types of cattle. Genet. Sel. Evol. 19: 225-248.
Hawke, T. J. and D. J. Garry. 2001. Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol. 91: 534-551.
Hill, J. J., M. V. Davies, A. A. Pearson, J. H. Wang, R. M. Hewick, N. M. Wolfman, and Y. Qiu. 2002. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J. Biol. Chem. 277: 40735-40741.
Hill, J. J., Y. Qiu, R. M. Hewick, and N. M. Wolfman. 2003. Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains. Mol. Endocrinol. 17: 1144-1154.
Hirai, S., H. Matsumoto, N. Hino, H. Kawachi, T. Matsui, and H. Yano. 2007. Myostatin inhibits differentiation of bovine preadipocyte. Domest. Anim. Endocrinol. 32: 1-14.
Jayaraman, L. and J. Massague. 2000. Distinct oligomeric states of SMAD proteins in the transforming growth factor-beta pathway. J. Biol. Chem. 275: 40710-40717.
Ji, S., R. L. Losinski, S. G. Cornrllius, G. R. Frank, G. M. Willis, D. E. Gerrard, F. F. S. Depreux, and M. E. Spurlock. 1998. Myostatin expression in procine tissues: tissue specificity and developmental and postnatal regulation. Amer. J. physiol. 275: R1265-1273.
Jiang, Y. L., N. Li, G. Plastow, Z. L. Liu, X. X. Hu, and C. X. Wu. 2002. Identification of three SNPs in the procine myostatin gene (MSTN). Anim. Biotechnol. 13: 173-178.
Johnson, P. L., K. G. Dodds, W. E. Bain, G. J. Greer, N. J. McLean, R. J. McLaren, S. M. Galloway, T. C. van Stijn, and J. C. McEwan. 2009. Investigations into the GDF8 g+ 6723G-A polymorphism in New Zealand Texel sheep. J. Anim. Sci. 87: 1856-1864.
Joulia, D., H. Bernardi, V. Garandel, F. Rabenoelina, B. Vernus, and G. Cabello. 2003. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp. Cell Res. 286: 263-275.
Kambadur, R., M. Sharma, T. P. L. Smith, and J. J. Bass. 1997. Mutations in myostatin (GDF-8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-915.
Kim, H. S., L. Liang, R. G. Dean, D. B. Hausman, D. L. Hartzell, and C. A. Baile. 2001. Inhibition of preadipocyte differentiation by myostatin treatment in 3T3–L1 cultures. Biochem. Biophys. Res. Commun. 281: 902-906.
Kim, Y. S., N. K. Bobbili, Y. K. Lee, H. J. Jin, and M. A. Dunn. 2007. Production of a polyclonal anti-myostatin antibody and the effects of in ovo administration of the antibody on posthatch broiler growth and muscle mass. Poult. Sci. 86: 1196-1205.
Kuang, S., K. Kuroda, G. F. Le, and M. A. Rudnicki. 2007. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129: 999-1010.
Kubota, K., F. Sato, S. Aramaki, T. Soh, N. Yamauchi, and M. A. Hattori. 2007. Ubiquitous expression of myostatin in chicken embryonic tissues: its high expression in testis and ovary. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 148: 550-555.
Kubota, T., Q. Zhang, J. L. Wrana, R. Ber, J. E. Aubin, W. T. Butler, and J. Sodek. 1989. Multiple forms of SppI (secreted phosphoprotein, osteopontin) synthesized by normal and transformed rat bone cell populations: regulation by TGF-beta. Biochem. Biophys. Res. Commun. 162: 1453-1459.
Langley, B., M. Thomas, A. Bishop, M. Sharma, S. Gilmour, and R. Kambadur. 2002. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J. Biol. Chem. 277: 49831-49840.
Lee, S. J. 2004. Regulation of muscle mass by myostatin. Annu. Rev. Cell Dev. Biol. 20: 61-86.
Lee, S. J. and A. C. McPherron. 2001. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. U.S.A. 98: 9306-9311.
Lee, S. J., L. A. Reed, M. V. Davies, S. Girgenrath, M. E. Goad, K. N. Tomkinson, J. F. Wright, C. Barker, G. Ehrmantraut, J. Holmstrom, B. Trowell, B. Gertz, M. S. Jiang, S. M. Sebald, M. Matzuk, E. Li, L. F. Liang, E. Quattlebaum, R. L. Stotish, and N. M. Wolfman. 2005. Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc. Natl. Acad. Sci. U.S.A. 102: 18117-18122.
Li, X. L., Z. L. Wu, Y. F. Gong, Y. Q. Liu, Z. Z. Liu, X. J. Wang, T. R. Xin, and Q. Ji. 2006. Single-nucleotide polymorphism identification in the caparine myostatin gene. J. Anim. Breed. Genet. 123: 141-144.
Liang, Y. C., J. Y. Yeh, and B. R. Ou. 2007. Effect of maternal myostatin antibody on offspring growth performance and body composition in mice. J. Exp. Biol. 210: 477-483.
Lin, J., H. B. Arnold, M. A. Della-Fera, M. J. Azain, D. L. Hartzell, and C. A. Baile. 2002a. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem. Biophys. Res. Commun. 291: 701-706.
Lin, S. H., Y. Z. Xiong, R. Zheng, A. Y. Li, C. Y. Deng, S. W. Jiang, M. G. Lei, Y. Q. Wen, and G. C. Cao. 2002b. Polymorphisms of porcine myostatin gene. Acta. Genet. Sin. 29: 326-331.
Liu, D., B. L. Black, and R. Derynck. 2001. TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes. Dev. 15: 2950-2966.
Long, D. B., K. Y. Zhang, D. W. Chen, X. M. Ding, and Y. U. Bing. 2009. Effects of active immunization against myostatin on carcass quality and expression of the myostatin gene in pigs. Anim. Sci. J. 80: 585-590.
Marchitelli, C., M. C. Savarese, A. Crisa, A. Nardone, P. A. Marsan, and A. Valentini. 2003. Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mamm. Genome 14: 392-395.
Mason, I. L., and V. Porter. 2002. Mason’s World Dictionary of Livestock Breeds, Types and Varieties. 5th ed. pp. 234-237. CAB International, Wallingford, UK.
McCroskery, S., M. Thomas, L. Maxwell, M. Sharma, and R. Kambadur. 2003. Myostatin negatively regulates satellite cell activation and self-renewal. J. Cell Biol. 162: 1135-1147.
McKoy, G., K. A. Bicknell, K. Patel, and G. Brooks. 2007. Developmental expression of myostatin in cardiomyocytes and its effect on foetal and neonatal rat cardiomyocyte proliferation. Cardiovasc. Res. 74: 304-312.
McPherron, A. C., and S. J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. U.S.A. 94: 12457-12461.
McPherron, A. C., and S. J. Lee. 2002. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Invest. 109: 595-601.
McPherron, A. C., A. M. Lawler, and S. J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387: 83-90.
Mendias, C. L., J. E. Marcin, D. R. Calerdon, J. A. Faulkner. 2006. Contractile properties of EDL and soleus muscles of myostatin-deficient mice. J. Appl. Physiol. 101: 898-905.
Mosher, D. S., P. Quiqnon, C. D. Bustamante, N. B. Sutter, C. S. Mellersh, H. G. Parker, and E. A. Ostrander. 2007. A mutation in the myostatin gene increases mass and enhances racing performance in heterozygous dogs. PLos Genet. 3: 779-786.
Nicholas, G., M. Thomas, B. Langley, W. Somers, K. Patel, C. F. Kemp, M. Sharma, and R. Kambadur. 2002. Titin-cap associates with, and regulates secretion of, myostatin. J. Cell Physiol. 193: 120-131.
Patel, K. and H. Amthor. 2005. The function of myostatin and strategies of myostatin blockade-new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscul. Disord. 15: 117-126.
Patruno, M., F. Caliaro, L. Maccatrozzo, R. Sacchetto, T. Martinello, L. Toniolo, , C. Reggiani, and F. Mascarello. 2008. Myostatin shows a specific expression pattern in pig skeletal and extraocular muscles during pre- and post-natal growth. Differentiation 76: 168-181.
Pownall, M. E., M. K. Gustafsson, and C. P. Emerson Jr. 2002. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu. Rev. Cell Dev. Biol. 18: 747-783.
Rebbapragada, A., H. Benchabane, J. L. Wrana, A. J. Celeste, and L. Attisano. 2003. Myostatin signals through a transforming growth factor {beta}-like signaling pathway to block adipogenesis. Mol. Cell Biol. 23: 7230-7242.
Reisz-Porszasz, S., S. Bhasin, J. N. Artaza, R. Shen, I. Sinha-Hikim, A. Hogue, T. J. Fielder, and N. F. Gonzalez-Cadavid. 2003. Lower skeletal muscle mass in male transgenic with muscle-specific overexpression of myostatin. Am. J. Physiol. Endocrinol. Metab. 285: 876-888.
Rios, R., I. Carneiro, V. M. Arce, and J. Devesa. 2002. Myostatin is an inhibitor of myogenic differentiation. Am. J. Physiol. Cell Physiol. 282: C993-C999.
Sambrook, J., and D. W. Russell. 2001. Molecular cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York.
SAS. 2005. SAS User's Guide: Statistics. Ver. 9.1.3. SAS Inst., Inc., Cary, NC.
Schuelke, M., K. R. Wagner, L. E. Stolz, C. Hubner, T. Riebel, W. Komen, T. Braun, J. F. Tobin, and S. J. Lee. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350: 2682-2688.
Shahin, K. A., and R. T. Berg. 1985. Fat growth and partitioning among the depots in double muscled and normal cattle. Can. J. Anim. Sci. 65: 295-306.
Sharma, M., R. Kambadur, K. G. Matthews, W. G. Somers, G. P. Devlin, J. V. Conaglen, P. J. Fowke, and J. J. Bass. 1999. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J. Cell Physiol. 180: 1-9.
Shelton, G. D., and E. Engvall. 2007. Gross muscle hypertrophy in whippet dogs is caused by a mutation in the myostatin gene. Neuromuscul. Disord. 17: 721-722.
Sonstegard, T. S., G. A. Rohrer, and T. P. L. Smith. 1998. Myostatin maps to chromosome 15 by linkage and physical analysis. Anim. Genet. 29: 19-22.
Stinckens A., J. Bijttebier, T. Luyten, K. Van den Maagdenberg, N. Harmegnies, S. De Smet, M. Georges, and Buys N. 2005. Detection of polymorphisms in the myostatin gene in Belgian pietrain pigs. Commun. Agric. Appl. Biol. Sci. 70:37-41.
Stinckens, A., T. Luyten, J. Bijttebier, K. Van den Maagdenberg, D. Dieltiens, S. Janssens, S. De Smet, M. Georges, and N. Buys. 2008. Characterization of the complete porcine MSTN gene and expression levels in pig breeds differing in muscularity. Anim. Genet. 39: 586-596.
Stinckens, A., T. Luyten , K. Van den Maagdenberg , S. Janssens , S. De Smet, M. Georges, and N. Buys. 2009. Interactions between genes involved in growth and muscularity in pigs: IGF-2, myostatin, ryanodine receptor 1, and melanocortin-4 receptor. Demestic Anim. Endocrinol. 37: 227-235.
Stratil, A., and M. Kopecny. 1999. Genomic organization, sequence and polymorphism of the procine myostatin (GDF8; MSTN) gene. Anim. Genet. 30: 468-470.
Sundaresan, N. R., V. K. Saxena, R. Singh, P. Jain, K. P. Singh, D. Anish, N. Singh, M. Saxena, and K. A. Ahmed. 2008. Expression profile of myostatin mRNA during the embryonic organogenesis of domestic chicken (Gallus gallus domesticus). Res. Vet. Sci. 85: 86-91.
Szabo, G., G. Dallmann, G. Muller, L. Patthy, M. Soller, and L. Varga. 1998. A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm. Genome 9: 671-672.
Tatsumi, R, and R. E. Allen. 2008. Mechano-biology of resident myogenic stem cells: molecular mechanism of stretch-induced activation of satellite cells. Anim. Sci. J. 79: 279-290.
Taylor, W. E., S. Bhasin, J. Artaza, F. Byhower, M. Azam, D. H. Willard Jr, F. C. Kull Jr, and N. Gonzalez-Cadavid. 2001. Myostatin inhibits cell proliferation and protein synthesis in C(2)C(12) muscle cells. Am. J. Physiol. Endocrinol. Metab. 280: E221-E228.
Ten Dijke, P., M. J. Goumans, F. Itoh, and S. Itoh. 2002. Regulation of cell proliferation by Smad proteins. J. Cell Physiol. 191: 1-16.
Thomas, M., B. Langley, C. Berry, M. Sharma, S. Kirk, J. Bass, and R. Kambadur. 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 275: 40235-40243.
Tsuchida, K., K. Y. Arai, Y. Kuramoto, N. Yamakawa, Y. Hasegawa, and H. Sugino. 2000. Identification and characterization of a novel follistatin-like protein as a binding protein for the TGF-beta family. J. Biol. Chem. 275: 40788-40796.
Varga, L., G. Szabo, A. Darvasi, G. Muller, M. Sass, and M. Soller. 1997. Inheritance and mapping of Compact (Cmpt), a new mutation causing hypermuscularity in mice. Genetics 147: 755-764.
Wagner, K. R., X. Liu, X. Chang, and R. E. Allen. 2005. Muscle regeneration in the prolonged absence of myostatin. Proc. Natl. Acad. Sci. U.S.A. 102: 2519-2524.
Welle, S., K. Bhatt, C. A. Pinkert, R. Tawil, and C. A. Thornton. 2007. Muscle growth after postdevelopmental myostatin gene knockout. Am. J. Physiol. Endocrinol. Metab. 292, E985-E991.
Wheeler, T. L., L. V. Cundiff, S. D. Shackelford, and M. Koohmaraie. 2001a. Characterization of biological types of cattle (cycle V): carcass traits and longissimus palatability. J. Anim. Sci. 79: 1209-1222.
Wheeler, T. L., S. D. Shackelford, E. Casas, L. V. Cundiff, and M. Koohmaraie. 2001b. The effects of Piedmontese inheritance and myostatin genotype on the palatability of longissimus thoracis, gluteus medius, semimembranosus, and biceps femoris. J. Anim. Sci. 79: 3069-3074.
Whittemore, L. A., K. Song, X. Li, J. Aghajanian, M. Davies, S. Girgenrath, J. J. Hill, M. Jalenak, P. Kelley, A. Knight, R. Maylor, D. O’Hara, A. Pearson, A. Quazi, S. Ryerson, X. Y. Tan, K. N. Tomkinson, G. M. Veldman, A. Widom, J. F. Wright, S. Wudyka, L. Zhao, and N. M. Wolfman. 2003. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem. Biophys. Res. Commun. 300: 965-971.
Ye, X., S. R. Brown, K. Nones, L. L. Coutinho, J. C. Dekkers, and S. J. Lamont. 2007. Associations of myostatin gene polymorphisms with performance and mortality traits in broiler chickens. Genet. Sel. Evol. 39: 73-89.
Yu, L., H. Tang, J. Wang, Y. Wu, L. Zou, Y. Jiang, C. Wu, and N. Li. 2007. Polymorphisms In the 5' regulatory region of myostatin gene are associated with early growth traits in Yorkshire pigs. Sci. China C Life Sci. 50: 642-647.
Zimmers, T. A., M. V. Davies, L. G. Koniaris, P. Haynes, A. F. Esquela, K. N. Tomkinson, A. C. McPherron, N. M. Wolfman, and S. J. Lee. 2002. Induction of cachexia in mice by systemically administered myostatin. Science 296: 1486-1488.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46643-
dc.description.abstract肌肉抑制生長基因(myostatin gene, MSTN gene)是TGF-β superfamily的成員之一,其功能為抑制肌肉的生長,對於骨骼肌生長的調控十分重要。MSTN基因變異在牛造成「雙肌」的現象;而豬MSTN基因啟動子(promoter)435及447位點(置)的多態性被認為是控制豬mtostatin表現量以及對於肌肉生成影響重要的候選基因標誌。本研究的目的是了解豬myostatin基因啟動子中的遺傳變異、多態性,及其對於豬隻生長及屠體相關性狀的影響。
研究結果顯示,豬MSTN基因啟動子區域435及447位點(置)可分別偵測到AA、AG及GG三種基因型;這兩點的基因型可以組合成MSTN 435GG/447AA, GA/AG, AA/GG, AA/AG, GA/AA, 及 AA/AA 6 種組合基因型;若是分別以haplotype來分析,則有三種haplotype: MSTN 435G/447A (B haplotype)、435A/447G (A haplotype)及435A/447A (C haplotype);其中MSTN 435AA/447AA 組合基因型及 435A/447A haplotype只在中國豬種及杜洛克豬中發現,而MSTN 435GG/447AA、 GA/AG及AA/GG三種組合基因型,435G/447A、435A/447G兩種haplotype只在藍瑞斯豬及約克夏豬中發現。研究結果顯示,MSTN基因啟動子區域 435及447兩個位點在藍瑞斯豬及約克夏豬中呈現完全連鎖不平衡(complete linkage disequilibrium)的情形,但是在杜洛克豬中則是不完全連鎖不平衡(incomplete linkage disequilibrium)。
生長性狀的相關性研究結果顯示,具有MSTN g.435GG的杜洛克豬個體有較高的平均日增重(average daily gain, ADG)(P < 0.01)、70日齡(P < 0.05)及150日齡體重(P < 0.01),且其達到110 kg所需日齡(P < 0.01)顯著較具有g.435AA基因型的個體早;另一方面,具有g.447AA基因型的杜洛克豬個體有較高的日增重(P < 0.01)、70日齡 (P < 0.01)及150日齡體重(P < 0.01),且其達到110 kg所需日齡(P < 0.01)顯著較具有g.447GG基因型的個體早。屠體性狀的相關性研究結果顯示,具有MSTN g.435GG基因型的個體第十肋及最後腰椎背脂較具有g.435AA基因型的個體為厚(P < 0.05);而具有g.435AA基因型的個體較具有g.435GG基因型的個體具有較重的前段瘦肉重(P < 0.05)、後段瘦肉重(P < 0.01)、瘦肉總重(P < 0.01)及較高的瘦肉百分比(P < 0.01);具有MSTN g.447GG基因型的個體,其第十肋背脂(P < 0.01)、第一肋背脂(P < 0.05)、最後肋背脂(P < 0.05)較薄,且後段脂肪(P < 0.05)較少,且有較重的後段瘦肉重(P < 0.01)、瘦肉總重(P < 0.01)及較高的瘦肉百分比(P < 0.01)。
本研究結果顯示,MSTN 435/447或許可用於未來豬隻遺傳育種及選拔計畫的基因標誌(genetic marker);另外,還可用於區分中國豬種及西方豬種的分子標誌。選拔MSTN g.435G及g.447A交替基因(allele)的豬隻可以提昇日增重、體重及減少達到110 kg所需日齡,而選拔MSTN g.435A及g.447G 交替基因的豬隻則預期可以增加四肢肌肉量、瘦肉總產量及減少背脂厚度。
zh_TW
dc.description.abstractMyostatin gene (MSTN gene) is a member of the TGF-β superfamily that can inhibit muscle growth. It’s function as essential for regulating skeletal muscle mass. In cattle, mutations and polymorphisms of MSTN gene have been reported that having relations with “double-muscled” phenotype. The polymorphisms in the MSTN promoter region of 435/447 sites have been reported as candidate genetic markers for regulating myostatin expression and also for the myogenic process. The purpose of this study was to determine genetic variations and polymorphisms for the porcine MSTN promoter region of 435/447 two sites and its effects on porcine growth and carcass traits.
The results indicated that the MSTN promoter region of 435/447 sites can be detected AA, AG, and GG 3 genotypes, respectively. And they could be divided into 6 combined genotypes: MSTN 435GG/447AA, GA/AG, AA/GG, AA/AG, GA/AA, and AA/AA; and 3 haplotypes: MSTN 435A/447G (A haplotype), 435G/447A (B haplotype), and 435A/447A (C haplotype), respectively. Moreover, we reported that the results of a MSTN 435AA/447AA genotype and 435A/447A haplotype were only found in Chinese pig breeds and Duroc, whereas MSTN 435GG/447AA, GA/AG, and AA/GG 3 genotypes and 435G/447A, 435A/447G two haplotypes were discovered in Landrace and Yorkshire. The findings had demonstrated that we not only found complete linkage disequilibrium in Landrace and Yorkshire, but also discovered new partially incomplete linkage disequilibrium in Duroc.
For growth traits test, MSTN g.435GG individuals had significant higher ADG (P < 0.01), body weight at 70 d (P < 0.05), at 150 d (P < 0.01), and were significant lower in age of 110 kg (P < 0.01) than g.435AA individuals in Duroc. On the other hand, g.447AA individuals had a significant higher value for ADG (P < 0.01), body weight at 70 d (P < 0.01) and at 150 d (P < 0.01), and were significant lower value in age days of 110 kg (P < 0.01) than g.447GG individuals. For carcass traits test, the MSTN g.435GG individuals were thicker in carcass backfat at 10th rib and last lumbar (P < 0.05) than g.435AA individuals. And that g.435AA had higher values than g.435GG for anterior-end meat (P < 0.05), posterior-end meat (P < 0.01), total lean weight (P < 0.01), and lean weight percentage (P < 0.01). The MSTN g.447GG individuals had thinner carcass backfat at 10th rib (P < 0.01), 1st rib (P < 0.05), last rib (P < 0.05), and lower posterior-end fat (P < 0.05), but greater in posterior-end meat (P < 0.01), total lean weight (P < 0.01), and lean weight percentage (P < 0.01).
In conclusion, the genetic marker of MSTN 435/447 SNPs might be used in porcine breeding and selection programs in the future. It could also be used as specific genetic maker for distinguishing Chinese and western pig breeds. Selection for MSTN g.435G and g.447A allele are expected to increase ADG, body weight and decreasing age of 110 kg, whereas selection for MSTN g.435A and g.447G allele are expected to increase muscle of limb and total meat production, decreasing backfat thickness.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:20:34Z (GMT). No. of bitstreams: 1
ntu-99-R97626004-1.pdf: 1043528 bytes, checksum: 1061e1da9fe739bb5b58ef472ed48e2d (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAcknowledgement I
中文摘要 II
Abstract IV
Figures VIII
Tables IX
Literature review 1
An overview of TGF-β signaling 1
Skeletal muscle development and regeneration 2
Role of myostatin in skeletal muscle development 4
Myostatin-null and transgenic phenotypes 5
Murine species 6
Domesticated species 6
Humans 8
Myostatin signaling in skeletal muscle 9
The proteolytic processing and regulated bioactivity of myostatin 9
Myostatin regulates myoblast proliferation, differentiation, and quiescence 10
Myostatin expressed in other tissue 11
Myostatin implications for agricultural sciences 13
Introduction 15
Materials and Methods 19
Experiment 1 19
Animals and DNA sampling 19
DNA extracted from blood or ear notch samples 20
DNA sequencing analysis of MSTN gene from 1 to 1242 bp 20
Polymorphisms of MSTN gene promoter region at 435/447 sites 21
Genotyping of MSTN promoter region 447 site by PCR-RFLP 22
Experiment 2 23
Animals 23
Traits and data collections 24
SNPs genotyping for MSTN g.435G>A and g.447A>G 24
Statistical analysis 25
Experiment 3 26
Animals and DNA samples 26
Traits and data collections 26
SNPs genotyping 27
Statistical analysis 27
Results 29
Experiment 1 29
The sequence analysis of MSTN promoter region from 1 to 1242 bp 29
Polymorphisms of MSTN promoter region at 435 and 447 sites 29
Linkage disequilibrium analysis of MSTN g.435g>a and g.447a>g sites in pigs 35
Genotyping MSTN 447 site by PCR-RFLP 37
Experiment 2 39
Polymorphisms of porcine MSTN promoter region in Duroc, Landrace, and Yorkshire pigs 39
The relation between the polymorphisms at MSTN g.435G>A and g.447A>G sites with growth traits in Duroc, Landrace, and Yorkshire pigs 42
Effects of mutated allele of MSTN g.435G>A and g.447A>G on growth traits in Duroc pigs 45
Determining the mode of action of MSTN g.435G>A and g.447A>G mutated alleles to growth traits in Duroc pigs 45
Experiment 3 48
Polymorphisms of porcine MSTN promoter region in LD and LYD pigs 48
The relation between the polymorphisms at MSTN g.435G>A and g.447A>G with growth, ultrasound, carcass and dissecting traits in LD and LYD pigs 50
Discussion
Experiment 1 56
Experiment 2 68
Experiment 3 73
References 80
dc.language.isoen
dc.title豬myostatin基因多態性與生長及屠體性狀相關性探討zh_TW
dc.titleGenetic variations and polymorphisms for porcine MSTN gene related to growth and carcass traitsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee宋永義,林恩仲,蕭振文
dc.subject.keyword肌肉抑制基因,多態性,豬,平均日增重,飼料效率,屠體,zh_TW
dc.subject.keywordMyostatin (MSTN) gene,Polymorphism,Porcine,average daily gain,feed efficiency,carcass,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2010-07-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
dc.date.embargo-terms2300-01-01
dc.date.embargo-lift2300-01-01-
Appears in Collections:動物科學技術學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
1.02 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved