請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46618完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王昭男 | |
| dc.contributor.author | Yu-Chieh Lin | en |
| dc.contributor.author | 林裕桀 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:19:05Z | - |
| dc.date.available | 2013-07-22 | |
| dc.date.copyright | 2010-07-22 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-20 | |
| dc.identifier.citation | [1] D. C. Hothersall, S. N. Chandler-Wilde and M. N. Hajmirzae, 'Efficiency of Single Noise Barriers', Journal of Sound and Vibration, Vol. 146, No. 2, pp. 303-322, 1991.
[2] 宮天民, '隔音牆的解析研究', 國立台灣大學土木工程學研究所碩士論文, 1990. [3] L. H. Hung and T. M. Kung, 'Noise Barrier Simulated by Rigid Screen with Back Wall', Journal of Engineering Mechanics, ASCE, Vol. 118, No. 1, pp. 40-55, 1992. [4] Sabih I. Hayek, 'Mathematical Modeling of Absorbent Highway Noise Barrier', Applied Acoustics, Vol. 31, pp. 77-100, 1990. [5] E. Kotarbinska, 'How to Calculate the Efficiency of an Acoustic Barrier in a Flat Room', Applied Acoustics, Vol. 23, pp. 99-108, 1988. [6] A. Muradali and K. R. Fyfe, 'A Study of 2D and 3D Barrier Insertion Loss using Improved Diffraction-based Methods', Applied Acoustics, Vol. 53, No. 1-3, pp. 49-75, 1998. [7] D. H. Crombie, D. C. Hothersall and S. N. Chandler-Wilde, 'Multiple-Edge Noise Barrier', Applied Acoustics, Vol. 44, pp. 353-367, 1995. [8] C. W. Lu, 'Numerical Study for Centrifugal Model Tests of a Single Pile Foundation Installed in Sandy Deposits', Journal of Mechanics, Vol. 23, No. 4, pp. 389-397, 2007. [9] J. T. Chen and P. Y. Chen, 'A Semi-analytical Approach for Stress Concentration of Cantilever Beams with Holes Under Bending', Journal of Mechanics, Vol. 23, No. 3, pp. 211-222, 2007. [10] V. Rokhlin, 'Rapid Solution of Integral Equations of Classical Potential Theory', Journal of Computational Physics , Vol. 60, pp. 187-207, 1983. [11] L. Greengard and V. Rokhlin, 'A Fast Algorithm for Particle Simulations', Journal of Computational Physics, Vol. 73, pp. 325-348, 1987. [12] L. Greengard, 'The Rapid Evaluation of Potential Fields in Particle Systems', MIT Press, Cambridge, Massachusetts, 1988. [13] H. Fujiwara, 'The Fast Multipole Method for Integral Equations of Seismic Scattering Problems', Geophysical Journal International, Vol. 133, pp. 773-782, 1998. [14] J. T. Chen and K. H. Chen, 'Applications of the Dual Integral Formulation in Conjunction with Fast Multipole Method in Large-scale Problems for 2D Exterior Acoustics', Engineering Analysis with Boundary Elements, Vol.28, No. 6, pp. 685-709, 2004. [15] N. Nishimura, K. Yoshida and S. Kobayashi, 'A Fast Multipole Integral Equation Method foe Crack Problems in 3D', Engineering Analysis with Boundary Elements, Vol. 23, pp. 97-105, 1999. [16] T. Sakuma and Y. Yasuda, 'Fast Multipole Boundary Element Method for Large-scale Steady-state Sound Field Analysis. Part I: Setup and Validation, Acta Acustica Untied with Acustica, Vol. 88, pp. 513-525, 2002. [17] N. Nishimura, 'Fast Multipole Accelerated Boundary Integral Equation Methods', American Society of Mechanical Engineers, Vol. 55, pp. 299-324, 2002. [18] V. Rokhlin, 'Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions', Applied and Computational Harmonic Analysis, Vol. 1, pp. 82-93, 1993. [19] H. Cheng, L. Greengard and V. Rokhlin, 'A Fast Adaptive Multipole Algorithm in three dimensions', Journal of Computational Physics, Vol. 155, No. 2, pp. 223-501, 1999. [20] L. Shen and Y. J. Liu, 'An Adaptive Fast Multipole Boundary Element Method for Three-dimensional Acoustic Wave Problems Based on the Burton-Miller Formulation', Computational Mechanics, Vol. 40, pp. 461-472, 2007. [21] R. A. Finkel and J. L. Bentley, 'Quad Trees A Data Structure for Retrieval on Composite Keys', Acta Informatica, Vol. 4, No. 1, pp. 1-9, 1974. [22] A. W. Appel, 'An Efficient Program for Many-body Simulation', SIAM Journal on Scientific Computing, Vol. 6, No. 1, pp. 85-103, 1985. [23] J. Barnes and P. Hut, 'A Hierarchical O(N log N) Force-calculation Algorithm', Nature, Vol. 324, No. 4, pp. 446-449, 1986. [24] A. J. Burton and G. F. Miller, 'The Application of Integral Equation Methods to the Numerical Solution of Some Exterior Boundary Value Problems', Proceeding of the Royal Society of London. Series A, Mathematical and Physical Science, Vol. 323, pp. 201-210, 1971. [25] C. H. Wu, C. N. Wang and T. D. Wu, 'A Study of Fast Multipole Method on the Analysis of 2D Barrier', Journal of Mechanics, Vol. 25, No. 3, 2009. [26] V. Rokhlin, 'Rapid Solution of Integral Equation of Scattering Theory in Two Dimensions', Journal of Computational Physics, Vol. 86, No. 2, pp. 414-439, 1989. [27] 蕭士俊, '二維隔音牆繞射音場之研究', 國立台灣大學土木工程學研究所碩士論文, 1992. [28] Y. J. Liu, L. Shen and M. Bapat, 'Development of the Fast Multipole Boundary Element Method for Acoustic Wave Problems', Recent Advances in Boundary Element Methods, pp. 287-303, 2009. [29] Y. J. Liu and N. Nishimura, 'The Fast Multipole Boundary Element Method for Potential Problems: A Tutorial', Engineering Analysis with Boundary Elements, Vol. 30, pp. 371-381, 2006. [30] K. Yoshida, 'Application of Fast Multipole Method to Boundary Integral Equation Method ', Ph. D. Dissertation, Department of Global Environment Engineering, Kyoto University, 2001. [31] Y. J. Liu, 'Dual BIE Approaches for Modeling Electrostatic MEMS Problems with Thin Beams and Accelerated by the Fast Multipole Method', Engineering Analysis with Boundary Elements, Vol. 30, pp. 940-948, 2006. [32] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, New York, Dover, 1965. [33] K. Fujiwara, D. C. Hothersall and C. H. Kim, 'Noise Barriers with Reactive Surface', Applied Acoustics, Vol. 53, No. 4, pp. 255-272, 1998. [34] 王昭男, '有限長度隔音牆性能之探討', 國科會計畫, NSC-85-2211-E-002-033, 1996. [35] 賴明正, '隔音牆頂邊裝置對繞射音場改善之研究',國立台灣大學工程科學及海洋工程學研究所碩士論文, 2004. [36] M. Baulac, J. Defrance and P. Jean, 'Optimisation with Genetic Algorithm of the Acoustic Performance of T-shaped Noise Barriers with a Reactive Top Surface', Applied Acoustics, Vol. 69, Issue 4, pp. 332-342, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46618 | - |
| dc.description.abstract | 本文以多階層快速多極展開法(Multilevel Fast Multipole Method)分析圓柱聲場散射問題與隔音牆聲場問題,並以介入損失值(Insertion Loss)作為其隔音效果之判斷指標。首先,針對多階層快速多極展開法的演算架構進行介紹,其主要概念是將核函數展開成場源點分離之兩函數的級數展開式,並加入樹狀分層結構,接著利用節點間相互傳遞(translation)、展開(expansion),以達到加快計算時間、減少記憶體使用量之目的。因為樹狀分割層數(Level)用於資料之儲存,其分割層數並無一定限制;而核函數展開部份,其展開式為一無窮級數,項數多寡之取捨將影響精確度以及計算時間,因此本文對於分割層數以及項數之影響也都詳加探討。最後,於文章中加以分析矩形、T型以及改良T型隔音牆之隔音效果,以作為將來設置隔音牆之參考依據。 | zh_TW |
| dc.description.abstract | The purpose of this study is to investigate the scattering problems of a cylinder and barriers when applying the Multilevel Fast Multipole Method (MLFMM), and the value of insertion loss was applied as an indicator to estimate the effects of barriers. Firstly, a detailed introduction by MLFMM was illustrated. The main idea of MLFMM is to expand the kernel function into degenerate kernels which can separate the field point and source point, and then construct the tree structure. Furthermore, the translation and expansion was used to analyse node-to-node interactions. Compared with conventional Boundary Element Method (BEM), MLFMM can accelerate the computational time and the memory requirement can also be reduced. In regard of the unlimited property of the tree structure and infinite series of the expansion, a detailed study for a number of terms and levels of tree structure were investigated. Finally, the effects of rectangular, T-shaped and the refined T-shaped barriers were also studied. This study may contribute to the design of the barriers in the near future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:19:05Z (GMT). No. of bitstreams: 1 ntu-99-R97525010-1.pdf: 574726 bytes, checksum: 3043ce7828ac5f8f4b657c216d9be0cf (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III 英文摘要 IV 簡稱術語對照表 V 目錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1.1 前言…………………………………………………………… 1 1.2 文獻回顧……………………………………………………... 2 1.3 研究動機與方法……………………………………………. 4 1.4 章節概要……………………………………………………... 4 第二章 基本理論 2.1 統御方程式………………………………………………….. 6 2.1.1 狀態方程式……………………………………………….. 6 2.1.2 連續方程式……………………………………………….. 6 2.1.3 尤拉方程式……………………………………………….. 7 2.1.4 波動方程式……………………………………………….. 7 2.2 邊界條件…………………………………………………….. 8 2.2.1 物體邊界條件……………………………...……………... 8 2.2.2 遠域邊界條件……………………………...……………... 9 2.3 邊界積分方程式………………………….………………... 9 2.3.1 基本解……………………………………...……………... 9 2.3.2 邊界積分式………………………………..……………... 10 2.3.3 半空間邊界積分式……………………..………………... 11 2.3.4 離散邊界積分式……………...…………………………... 14 第三章 多階層快速多極展開法 3.1 基本解展開式………………………………………………. 17 3.1.1 多極點展開式…………………………………………….. 19 3.2 四元樹狀結構……………………………………………..... 20 3.3 基本架構……………………………………………... 22 3.3.1 多極展開點轉換………………………………………….. 22 3.3.2 區域展開式……………………………………………….. 23 3.3.3 區域展開點轉換…….…………………………...……….. 24 3.4 多階層快速多極展開演算法…...……………………….. 26 第四章 聲場散射問題分析與驗證 4.1 問題描述…………………………………………………….. 33 4.2 數值模擬分析…...………………………………………….. 34 4.2.1 展開項數與分割層數探討……………………………... 34 4.2.2 計算時間與最佳層數…………………………………….. 41 4.3 散射聲場分析與討論…………………………….……….. 42 第五章 隔音牆分析 5.1 隔音牆能力指標與邊界條件…..………………………... 45 5.2 矩形隔音牆分析……………....…….……………………... 47 5.2.1矩形隔音牆高度影響……………...……………………… 48 5.3 T型隔音牆分析……………………….…………………….. 49 5.3.1 T type橫樑高度影響……………………………………… 49 5.3.2 T type橫樑長度影響………..…………………………….. 51 5.3.3 T type改良…………………..…………………………….. 52 第六章 結論與未來展望 6.1 結論…………………………………………………………… 55 6.2 未來展望…………………………………………………….. 56 參考文獻 57 附錄 基本解展開………………………………………………………….. 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 散射 | zh_TW |
| dc.subject | 樹狀結構 | zh_TW |
| dc.subject | 核函數 | zh_TW |
| dc.subject | 介入損失值 | zh_TW |
| dc.subject | 隔音牆 | zh_TW |
| dc.subject | 傳遞 | zh_TW |
| dc.subject | 多階層快速多極展開法 | zh_TW |
| dc.subject | 展開 | zh_TW |
| dc.subject | Expansion | en |
| dc.subject | Multilevel Fast Multipole Method | en |
| dc.subject | Scattering | en |
| dc.subject | Barrier | en |
| dc.subject | Insertion Loss | en |
| dc.subject | Kernel function | en |
| dc.subject | Tree structure | en |
| dc.subject | Translation | en |
| dc.title | 多階層快速多極展開法於隔音牆分析之應用 | zh_TW |
| dc.title | Application of the Multilevel Fast Multipole Method on the Analysis of Barrier | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝傳璋,劉德源,趙茂吉,涂季平 | |
| dc.subject.keyword | 多階層快速多極展開法,散射,隔音牆,介入損失值,核函數,樹狀結構,傳遞,展開, | zh_TW |
| dc.subject.keyword | Multilevel Fast Multipole Method,Scattering,Barrier,Insertion Loss,Kernel function,Tree structure,Translation,Expansion, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 561.26 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
