Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46591
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑
dc.contributor.authorChin-Hsiung Hsiehen
dc.contributor.author謝錦雄zh_TW
dc.date.accessioned2021-06-15T05:17:30Z-
dc.date.available2020-12-31
dc.date.copyright2010-07-28
dc.date.issued2010
dc.date.submitted2010-07-21
dc.identifier.citation[1] Sheridan MH, Shea LD, Peters MC, Mooney DJ. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release. 2000;64:91-102.
[2] Langer R, Vacanti JP. Tissue engineering. SCIENCE. 1993;260:920-926.
[3] Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. SCIENCE. 2002;295:1009-1014.
[4] Whitaker MJ, Quirk RA, Howdle SM, Shakesheff KM. Growth factor release from tissue engineering scaffolds. Journal of Pharmacy and Pharmacology. 2001;53:1427-1437.
[5] Babensee JE, McIntire LV, Mikos AG. Growth factor delivery for tissue engineering. Pharm Res. 2000;17:497-504.
[6] Nimni ME. Polypeptide growth factors: targeted delivery systems. Biomaterials. 1997;18:1201-1225.
[7] Tabata Y. Tissue regeneration based on growth factor release. Tissue Engineering. 2003;9:S5-S15.
[8] Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues - state of the art and future perspectives. Journal of Biomaterials Science-Polymer Edition. 2001;12:107-124.
[9] Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, et al. Preparation and Characterization of Poly(L-Lactic Acid) Foams. Polymer. 1994;35:1068-1077.
[10] Mooney DJ, Baldwin DF, Suh NP, Vacanti LP, Langer R. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials. 1996;17:1417-1422.
[11] Harris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. Journal of Biomedical Materials Research. 1998;42:396-402.
[12] Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R. Laminated 3-Dimensional Biodegradable Foams for Use in Tissue Engineering. Biomaterials. 1993;14:323-330.
[13] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529-2543.
[14] Lam CXF, Mo XM, Teoh SH, Hutmacher DW. Scaffold development using 3D printing with a starch-based polymer. Materials Science & Engineering C-Biomimetic and Supramolecular Systems. 2002;20:49-56.
[15] Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. Journal of Biomedical Materials Research. 1999;47:8-17.
[16] Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7:216-223.
[17] Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research. 2002;60:613-621.
[18] Li D, Wang YL, Xia YN. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Letters. 2003;3:1167-1171.
[19] Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanotibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25:877-886.
[20] Katta P, Alessandro M, Ramsier RD, Chase GG. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Letters. 2004;4:2215-2218.
[21] Zhang YZ, Huang ZM, Xu XJ, Lim CT, Ramakrishna S. Preparation of core-shell structured PCL-r-gelatin Bi-component nanofibers by coaxial electrospinning. Chemistry of Materials. 2004;16:3406-3409.
[22] Jiang HL, Hu YQ, Li Y, Zhao PC, Zhu KJ, Chen WL. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. Journal of Controlled Release. 2005;108:237-243.
[23] Russell A. McGowan Institute for Regenerative Medicine. Regenerative Medicine. 2010;5:23-25.
[24] Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circulation Research. 2007;100:1249-1260.
[25] Ostuni E, Kane R, Chen CS, Ingber DE, Whitesides GM. Patterning mammalian cells using elastomeric membranes. Langmuir. 2000;16:7811-7819.
[26] Bhatia SN, Yarmush ML, Toner M. Controlling cell interactions by micropatterning in co-cultures: Hepatocytes and 3T3 fibroblasts. Journal of Biomedical Materials Research. 1997;34:189-199.
[27] Reyes DR, Perruccio EM, Becerra SP, Locascio LE, Gaitan M. Micropatterning neuronal cells on polyelectrolyte multilayers. Langmuir. 2004;20:8805-8811.
[28] Ostuni E, Chen CS, Ingber DE, Whitesides GM. Selective deposition of proteins and cells in arrays of microwells. Langmuir. 2001;17:2828-2834.
[29] Upadhyaya S, Selvaganapathy PR. Microfluidic devices for cell based high throughput screening. Lab on a Chip. 2010;10:341-348.
[30] Wu MH, Huang SB, Lee GB. Microfluidic cell culture systems for drug research. Lab on a Chip. 2010;10:939-956.
[31] Kleinfeld D, Kahler KH, Hockberger PE. Controlled Outgrowth of Dissociated Neurons on Patterned Substrates. Journal of Neuroscience. 1988;8:4098-4120.
[32] Branch DW, Corey JM, Weyhenmeyer JA, Brewer GJ, Wheeler BC. Microstamp patterns of biomolecules for high-resolution neuronal networks. Medical & Biological Engineering & Computing. 1998;36:135-141.
[33] Lom B, Healy KE, Hockberger PE. A Versatile Technique for Patterning Biomolecules onto Glass Coverslips. Journal of Neuroscience Methods. 1993;50:385-397.
[34] Revzin A, Tompkins RG, Toner M. Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass. Langmuir. 2003;19:9855-9862.
[35] Xia YN, Whitesides GM. Soft lithography. Annual Review of Materials Science. 1998;28:153-184.
[36] Jackman RJ, Wilbur JL, Whitesides GM. Fabrication of submicrometer features on curved substrates by microcontact printing. SCIENCE. 1995;269:664-666.
[37] Luk YY, Kato M, Mrksich M. Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir. 2000;16:9604-9608.
[38] Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, et al. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir. 2001;17:6336-6343.
[39] Folch A, Jo BH, Hurtado O, Beebe DJ, Toner M. Microfabricated elastomeric stencils for micropatterning cell cultures. J Biomed Mater Res. 2000;52:346-353.
[40] Hardy MH. The Secret Life of the Hair Follicle. Trends in Genetics. 1992;8:55-61.
[41] Paus R, Muller-Rover S, van der Veen C, Maurer M, Eichmuller S, Ling G, et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. Journal of Investigative Dermatology. 1999;113:523-532.
[42] Stenn KS, Paus R. Controls of hair follicle cycling. Physiological Reviews. 2001;81:449-494.
[43] Millar SE. Molecular mechanisms regulating hair follicle development. Journal of Investigative Dermatology. 2002;118:216-225.
[44] Paus R, Cotsarelis G. The biology of hair follicles. New England Journal of Medicine. 1999;341:491-497.
[45] Kligman A. Pathologic Dynamics of Human Hair Loss I Telogen Effluvium. American Practitioner and Digest of Treatment. 1961;12:679-&.
[46] Whiting DA. Chronic telogen effluvium. Dermatologic Clinics. 1996;14:723-&.
[47] Trueb RM. Chemotherapy-induced Alopecia. Seminars in Cutaneous Medicine and Surgery. 2009;28:11-14.
[48] Price VH. Treatment of hair loss. New England Journal of Medicine. 1999;341:964-973.
[49] Gilhar A, Ullmann Y, Berkutzki T, Assy B, Kalish RS. Autoimmune hair loss (alopecia areata) transferred by T lymphocytes to human scalp explants on SCID mice. Journal of Clinical Investigation. 1998;101:62-67.
[50] Madani S, Shapiro J. Alopecia areata update. Journal of the American Academy of Dermatology. 2000;42:549-566.
[51] McDonagh AJG, Tazi-Ahnini R. Epidemiology and genetics of alopecia areata. Clinical and Experimental Dermatology. 2002;27:409-413.
[52] Li JJ, Mitchell LH, Dow RL. Thyroid receptor agonists for the treatment of androgenetic alopecia. Bioorganic & Medicinal Chemistry Letters. 2010;20:306-308.
[53] Hillen HFP, Breed WPM, Botman CJ. Scalp Cooling by Cold Air for the Prevention of Chemotherapy-Induced Alopecia. Netherlands Journal of Medicine. 1990;37:231-235.
[54] Katsimbri P, Bamias A, Pavlidis N. Prevention of chemotherapy-induced alopecia using an effective scalp cooling system. European Journal of Cancer. 2000;36:766-771.
[55] Wu JJ, Zhu TY, Lu YG, Liu RQ, Mai Y, Cheng B, et al. Hair follicle reformation induced by dermal papilla cells from human scalp skin. Archives of Dermatological Research. 2006;298:183-190.
[56] Cohen J. Transplantation of Individual Rat and Guinea-Pig Whisker Papillae. Journal of Embryology and Experimental Morphology. 1961;9:117-&.
[57] Jahoda C, Oliver RF. The Growth of Vibrissa Dermal Papilla Cells-Invitro. British Journal of Dermatology. 1981;105:623-627.
[58] Reynolds AJ, Jahoda CAB. Cultured Dermal Papilla Cells Induce Follicle Formation and Hair-Growth by Transdifferentiation of an Adult Epidermis. Development. 1992;115:587-593.
[59] Osada A, Iwabuchi T, Kishimoto J, Hamazaki TS, Okochi H. Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction. Tissue Engineering. 2007;13:975-982.
[60] Young TH, Lee CY, Chiu HC, Hsu CJ, Lin SJ. Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle regeneration. Biomaterials. 2008;29:3521-3530.
[61] Lin CM, Li Y, Ji YC, Keng H, Cai XN, Zhang JK. Microencapsulated human hair dermal papilla cells: a substitute for dermal papilla? Archives of Dermatological Research. 2008;300:531-535.
[62] Yen CM, Chan CC, Lin SJ. High-throughput reconstitution of epithelial-mesenchymal interaction in folliculoid microtissues by biomaterial-facilitated self-assembly of dissociated heterotypic adult cells. Biomaterials. 2010;31:4341-4352.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46591-
dc.description.abstract本研究中利用疏水性材質之特性,以及自動化雷射雕刻技術,並結合兩者之優點,發展自動化且較為簡易之薄膜式細胞陣列製作技術,其中此技術可成功應用製作細胞微陣列,該細胞微陣列隨之被應用於探討細胞與細胞間之交互作用,以及細胞對藥物作用後之生化反應。再者,此疏水性細胞微陣列提供一個適當之細胞培養環境,足以促使毛囊乳頭細胞在一般培養環境下,成功自我聚集形成具功能性之微組織,使其具有在體內環境可成功誘導毛囊之新生,此方法對於大量生產功能性毛囊微組織有很大之效用,對於毛髮再生之研究有很大的幫助。
實驗中首先利用疏水性材質發展一個高效率之細胞轉殖方法,由於疏水性材質對細胞之親和性較弱,間接的使得細胞對實驗中所採用之骨架材質之親和性提升,因此可以達到提高細胞轉殖效率的功效,由於明膠與幾丁聚醣在組織工程上的應用廣泛且兩者皆具有透明之性質,實驗中採用明膠微球體以及幾丁聚醣薄膜分別為立體與平面之模型,在搭配以疏水性材質聚二甲基硅氧烷(PDMS)預先處理之細胞培養環境,成功證實此利用相對親疏水特性的培養方式,的確有助於提升細胞轉殖至組織工程培養骨架基材的效率。
傳統上製作細胞陣列時,通常需要一系列之步驟,其中包含化學性修飾材料表面或是物理性的處理,其中源起於微機電製程之軟蝕刻技術最為被廣泛使用,但是此方法的前置製備過程中,需要較為嚴苛之環境及設備要求,而在本實驗中,利用疏水性材質之特性結合自動化雷射雕刻技術,將製作細胞微陣列母模的製程,成功簡化成單一步驟之雷射雕刻流程,實驗中,將疏水性材質預先製作成搭配實驗所需之厚度後,再將此薄膜送入自動雕刻之雷射平台中,成功在短時間製作出大量的細胞微陣列母模。此細胞微陣列母模隨後在實驗中被應用於探討老鼠腎上腺髓質嗜鉻細胞瘤(PC12 cell)在神經生長激素影響下,轉分化成神經性細胞並生長出似軸突結構之研究,另外,也成功應用於探討藥物對於細胞之移動的相關影響。
最後,此自動化生產之細胞微陣列母模被應用於探討製備具陣列形式之功能性毛囊微組織培養之研究,利用疏水性材質與形成之微凹槽的影響,成功的在市售的聚苯乙烯細胞培養材質上,培養出自我聚集之具毛髮誘導功能之毛囊乳頭細胞微組織,實驗中我們發現,提供適當的孔徑大小以及細胞培養密度,可以有效的形成毛囊乳頭細胞微組織,且此微組織在體內實驗中具有成功誘導毛囊發生之潛力。
zh_TW
dc.description.abstractRelative hydrophobic culture strategy and robotic laser micromachining were used in this study to develop a simple and automatic process of cell array. This method has been applied in the research of cell-cell interaction and the response of cell to drug treatment. Furthermore, the relative hydrophobic culture strategy and the microwell cell patterning provided a suitable environment for cultivating self-assembled spheroidal dermal papilla microtissues in the commercial polystyrene culture plate. The arrayed functional microtissues of dermal papilla can be applied to the reconstruction of hair for patients with alopecia.
In the first experiment, we designed a strategy to improve the efficiency of cell adhesion to the scaffold using a hydrophobic cell culture environment Cells show lower affinity to the surface of PDMS than tissue culture polystyrene (TCPS) plate. When cells were cultured with gelatin microspheres or chitosan films in PDMS-coated plate instead of a normal TCPS plate, there was a significant increase in cell attachment efficiency. The results demonstrate that the method is easy to use and facilitates fast cultivation of cell-scaffold constructs.
In the second experiment, we developed a method for fast cell array fabrication using laser sintering and the hydrophobicity of PDMS films (Patterned PDMS-based cell array system, PCAS). This approach can be easily adopted and is cost-effective. We used NIH/3T3 fibroblast cells to demonstrate the feasibility of PCAS. We also used PC-12 cells with poor adhesion ability to demonstrate cell-cell communication. Results showed that the method is very useful for studying cell-cell interaction, cell-substrate interaction or cell migration.
Finally, we employed the PCAS to develop a strategy for cultivating dermal papilla (DP) cells to form multiple arrayed spheroidal microtissues for transplantation. By controlling the cell seeding densities, a microwell with arrayed DP spheroidal microtissues was easily formed. Formation of DP microtissues was associated with the overlapping of multilayered cells on microwells and low cell-substrate adhesivity on the PDMS film. A microwell environment enhanced the aggregation of DP cells into spheroidal microtissues on the TCPS culture plate. The aggregation of DP microtissues formed on microwells preserves their hair induction potential for use in follicular cell implantation and is independent of the number of cells in the TCPS plate. Large quantity of DP spheroidal microtissues can be obtained fast and simply by the platform.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:17:30Z (GMT). No. of bitstreams: 1
ntu-99-D95548012-1.pdf: 7123489 bytes, checksum: f86d80ba40c4854c012bd92ea883a26c (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
Contents I
List of figures IV
Abstract (chinese) VI
Abstract VIII
Chapter 1 Introduction and literature review 1
1.1. Tissue engineering 1
1.1.1. Cell 2
1.1.2. Signal 3
1.1.3. Scaffold 4
1.2. Regenerative medicine 8
1.3. Cell patterning 9
1.4. Hair regeneration 16
1.4.1. Hair 16
1.4.2. Hair morphogenesis 18
1.4.3. Hair cycle 21
1.4.4. Hair loss 22
1.4.5. The treatment of Hair loss 25
1.5. Hair follicle tissue engineering 27
1.6. Experiment 29
1.7. References 34
Chapter 2 High-efficiency cell seeding method by relatively hydrophobic culture strategy 38
2.1. Introduction 38
2.1.1. Polydimethylsiloxane (PDMS) elastomer 41
2.1.2. Gelatin 42
2.1.3. Chitosan 43
2.2. Materials and methods 43
2.2.1. Fabrication of gelatin microspheres 44
2.2.2. Fabrication of chitosan film 45
2.2.3. Fabrication of PDMS-coated cell culture plate 45
2.2.4. Cell and cell culture medium 46
2.2.5. Cell adhesion on PDMS-coated and TCPS systems 46
2.2.6. Cell adhesion on gelatin microspheres between PDMS-coated and TCPS systems 46
2.2.7. MTS assay on gelatin microspheres 47
2.2.8. Cell adhesion and MTS assay on chitosan film 48
2.2.9. Morphology of cell-microsphere constructs 49
2.2.9.1 Light microscope 49
2.2.9.2 Scanning electron microscope (SEM) 49
2.2.9.3 Confocal laser scanning microscope (CLSM) 49
2.2.10. The fast fabrication of the cell-microspheres construct in vitro 50
2.2.11. In vivo study of the cell-spheres 50
2.2.12. Statistical analysis 51
2.3. Results and Discussion 51
2.3.1. Cell seeding results with gelatin microspheres as the scaffold 52
2.3.2. Cell seeding results with chitosan films as the scaffold 56
2.3.3. The fast fabrication of the cell-spheres in vitro and in vivo transplantation 57
2.4. Conclusion 59
2.5. Figures 61
2.6. References 73
Chapter 3 Patterned PDMS based cell array system: A novel method for fast cell array fabrication 77
3.1. Introduction 77
3.1.1. Laser micromachining 79
3.1.2. PC12 cell 80
3.2. Materials and Methods 81
3.2.1. Preparation of patterned PDMS arrays 82
3.2.2. The patterned PDMS based cell array system (PCAS) operation 83
3.2.3. Cell culture 83
3.2.3.1. Fabrication of PCAS for adherent cell 84
3.2.3.2. Fabrication of PCAS for poorly adherent cell 84
3.2.4. The effect of cell seeding density for fast fabrication of PCAS 85
3.2.5. The differentiations of PC12 cells on PCAS 85
3.2.6. The application of PCAS in a cell migration study 86
3.3. Results 87
3.3.1. Formation of adherent NIH/3T3 fibroblast PCAS 87
3.3.2. Formation of poorly adherent PC12 PCAS 88
3.3.3. The effect of cell seeding density for fast fabrication of PCAS 89
3.3.4. The differentiation of PC12 cells on PCAS 89
3.3.5. The application of PCAS in a cell migration study 90
3.4. Discussion 90
3.5. Conclusion 95
3.6. Figures 96
3.7. References 103
Chapter 4 Cultivation of arrayed dermal papilla spheroidal microtissues 105
4.1. Introduction 105
4.1.1. Dermal papilla cells 108
4.2. Materials and Methods 109
4.2.1. Preparation of patterned PDMS arrays 110
4.2.2. Cell culture 111
4.2.3. Determination of optimal conditions for DP microtissues 112
4.2.4. Viability of DP microtissues 113
4.2.5. Morphology, immunofluorescent staining of DP microtissue 114
4.2.6. HF induction ability of DP microtissues 115
4.2.7. Statistical analysis 117
4.3. Results 117
4.3.1. Formation of DP microtissues on PCAS 117
4.3.2. Effect of cell seeding density for formation of DP microtissues on PCAS 118
4.3.3. Morphologies of DP microtissues on PCAS 119
4.3.4. Viability fluorescent staining of DP microtissue 119
4.3.5. Characters of DP microtissues on PCAS 120
4.3.6. HF induction ability of DP microtissues 121
4.4. Discussion 121
4.5. Conclusion 127
4.6. Figures 129
4.7. References 137
Chapter 5 Conclusion 141
dc.language.isoen
dc.title以相對親疏水性特性應用於功能性再生醫學研究zh_TW
dc.titleApplication of relatively hydrophobic strategies and approaches to construction of functional tissue constructsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee鍾次文,孫瑞昇,江鴻生,黃意真
dc.subject.keyword聚二甲基矽氧烷,組織工程,細胞陣列,真皮乳頭細胞,毛囊,zh_TW
dc.subject.keywordPDMS,tissue engineering,cell array,dermal papilla,hair follicles,en
dc.relation.page143
dc.rights.note有償授權
dc.date.accepted2010-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
6.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved