請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46585完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊哲人(Jer-Ren Yang) | |
| dc.contributor.author | Hsin-Yi Lee | en |
| dc.contributor.author | 李欣怡 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:17:08Z | - |
| dc.date.available | 2013-07-22 | |
| dc.date.copyright | 2010-07-22 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-20 | |
| dc.identifier.citation | References
1. H. Carpenter and S. Tamura, Proc. R. Soc. (A), 113 (1926), p.161 2. C. H. Mathewson, Proc. Inst. Metals Div., A.I.M.E., 7 (1928), p.1928 3. C. H. Mathewson, Trans. Am. Soc. Metals, 32 (1944), p.38 4. W. G. Burgers, Nature Lond. 157 (1946), p.76 5. J. E. Burke and Y. G. Shiau, Trans. A.I.M.E., 175 (1948), p.141 6. W. G. Burgers, Physica, 15 (1949), p.92 7. R. Maddin, H. Mathewson and R.Hibbard, Trans. A.I.M.E., 185 (1949), p.655 8. J. E. Burke, Trans. A.I.M.E., 188 (1950), p.1324 9. Discussion of ref. 7, Trans. A.I.M.E., 188 (1950), p.1020 10. R. L. Fullman and J. C. Fisher, J. appl. Phys., 22 (1951), p.1350 11. S. Dash and N. Brown, Acta Metall. 11 (1963), p.1067 12. J. P. Nielsen, Acta Metall. 15 (1967), p.1083 13. H. Gleiter, Acta Metall. 17 (1969), p.1421 14. P. Merklen, E. Furubayashi and H. Yoshida, Trans. Japan Inst. Metals, 11 (1970), p.252 15. G. Bäro and H. Gleiter, Z. Metallk., 63 (1972), p.661 16. G. Gindraux and W. Form, J. Inst. Metals, 101 (1973), p.85 17. M.A. Meyers and L.E. Murr , Acta Metall. 26 (1978), p.951 18. S. Mahajan , C.S. Pande , M.A. Imam and B.B.Rath , Acta Metall. 45 (1997), p.2633 19. L. E. Murr, Interfacial Phenomena in Metals and Alloys. Addison-Wesley, Reading, Mass (1975) 20. R. L. Fullman, J. appl. Phys., 22 (1951), p.456 21. C. M. Sargent, Trans. Metal. Soc. A.I.M.E., 242 (1968), p.1188 22. D. Vaughan, Phil. Mag., 22 (1970), p.1003 23. K. T. Aust and J. W. Rutter, Trans. Metal. Soc. A.I.M.E., 215 (1959), p.820 24. H. Hu and C.S. Smith, Acta Metall. 4 (1956), p. 638. 25. C.S. Pande, M.A. Imam and B.B. Rath, Metall. Trans. A 21A (1990), p. 2891. 26. Q. Li, J.R. Cahoon and N.L. Richards, Scripta Metall. 55 (2006), p. 1155. 27. G. Gottstein, Acta Metall. 32 (1984), p. 1117. 28. A. Berger, P.J. Wilbrandt, F. Ernst, U. Klement and P. Haasen, Prog. Mater. Sci. 32 (1988), p. 2. 29. G.C. Hasson and C. Goux, Scripta Metall. 5 (1971), p. 889. 30. P.J. Wilbrandt and P. Haasen, Z. Metallkd. 71 (1980), p. 385. 31. P.J. Goodhew, Metal Sci. 13 (1979), p. 108. 32. L.C. Lim and R. Raj, Acta Metall. 32 (1984), p. 1177. 33. C.M.F. Rae, Phil. Mag. A 44 (1981), p. 1395. 34. W. Form, G. Gindraux and V. Mlyncar, Metal Sci. 14 (1980), p. 16. 35. V. Randle, Acta Metall. 52 (2004), p. 4067. 36. D.P. Field, R.C. Eames and T.M. Lillo, Scripta Metall. 54 (2006), p. 983. 37. D. Kuhlmann-Wilsdorf and H. Wilsdorf, Acta Metall., 1 (1953), p. 394. 38. W. J. Babiak and F. N. Rhines, Trans. Metall. Soc. AIME, 218 (1960), p.21. 39. R.C. Boettner, A.J. Mcevily and Y.C. Liu, Philos. Mag., 10 (1964), p.95 40. E. Macherauch, Z. Metallkd., 59 (1968), p.669 41. K. Farrell and J.T. Houston, Scr. Metall., 5 (1971), p.463 42. S. Miura and Y. Saeki , Trans JIM , 17 (1976), p.253 43. L.C. Lim and R. Raj, J. Phys., 46 (1985), p.581 44. A.W. Thompson, Metallography, 5 (1972), p.366 45. C.J. Youngdahl, J.R. Weertman, R.C. Hugo and H.H. Kung, Scripta Mater. 44 (2001), p.1475 46. R. Armstrong, J. Godd, R.M. Douhwaite and N.J. Petch, Philos. Mag., 7 (1972), p.42 47. K. Nakanishi and H. Suzuki, Trans. Jpn. Inst. Met., 15 (1974), p.435 48. H. Suzuki and K. Nakanishi, Trans. Jpn. Inst. Met., 16 (1975), p.17 49. E.M. Schulson, T.P. Weihs, D.V. Viens and I. Baker, Acta Metall., 33 (1985), p.1587 50. J.W. Wyrzykowski, K.J. Kurzydlowski and W. Przetakiewicz, Arch. Metall. 3 (1987), p.113 51. R.A. Varin and K.J. Kurzydlowski, Mater. Sci. and Eng. A, 101 (1988), p.221 52. J. Mizera and J.W. Wyrzykowski, Mater. Sci. and Eng. A, 112 (1989), p.39 53. J.T. Evans, Scripta Metall., 8 (1974), p.1099 54. L.C. Lim, Scripta Metall., 18 (1984), p.1139 55. L. Remy, Acta Metall., 25 (1977), p.711 56. L. Remy, Metallurgical Transactions A, 12 (1981), p.387 57. S. Mahajan and G.Y. Chin, Acta Metall., 21 (1973), p.173 58. Z-H Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn and H. Gleiter, Scripta Mater., 54 (2006), p.1163 59. Z-H Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter and H. Hahn, Acta Mater. 56 (2008), p.1126 60. L. Lu, M. Dao, T. Zhu and J. Li, Scripta Mater., 60 (2009), p.1062 61. R.G. Hoagland, R.J. Kurtz and C.H. Henager Jr., Scripta Mater., 50 (2004), p.775 62. J. Chen, L. Lu and K. Lu, Scripta Mater., 54 (2006), p.1913 63. J.A. Knapp and D.M. Follstaedt, J. Mater. Res., 19 (2004), p.218 64. C.A. Schuh, T.G. Nieh and H. Iwasaki, Acta Mater., 51 (2003), p.431 65. H.Q. Li and F. Ebrihimi, Acta Mater., 54 (2006), p.2877 66. L. Lu, Y. Shen, X. Chen, L. Qian and K. Lu, Science, 304 (2004), p.422 67. L. Lu, X. Cheng, X. Huang and K. Lu, 323 (2009), p.607 68. K. Lu, L. Lu and S. Suresh, Science, 324 (2009), p.349 69. M. Dao, L. Lu, Y.F. Shen and S. Suresh, Acta Mater. 54 (2006), p.5421 70. T. Watanabe, Res. Mech., 11 (1984), p.47 71. A.L. Pinto, C.S.C. Viana and L.H. Almeida, Mater. Sci. and Eng. A, 445-446 (2007), p.14 72. C.S. Pande , M.A. Imam , B.B. Rath , Met.Trans.A , 21A (1990), p.2891 73. L.E. Murr, Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, (1975), p.131 74. C.S. Pande, B.B. Rath and M.A. Imam, Mater. Sci. and Eng. A, 367 (2004), p.171 75. J.P. Hirth and R.W. Balluffi, Acta Metall., 21 (1973), p.929 76. Robert E. Reed-Hill and Reza Abbaschian, Physical Metallurgy Principles, (1992) 3rd ed., p.540 77. Johannes Weertman and Julia R. Weertman, Elementary Dislocation Theory, (1992), p.139-146 78. J. W. Christian, ¨Decomposition of Austenite by Diffusional Proccsses¨, Interscience, New York, (1962), p.371 79. G. Krauss and A.R. Marder, Metallurgical Transactions, 2 (1971), p.2343 80. H. K. D. H. Bhadeshia,¨Worked Examples in the Geometry of Crystals¨, The Institute of Metals, (1987). 81. D. A. Porter, K. E. Easterling, ¨Phase transformations in metals and alloys¨, London, New York, (1992). 82. A. H. Cottrell, ¨Theoretical Structural Metallurgy¨, Edward Arnold, (1962) 83. G. Krauss, ¨STEELS: Heat Treatment and Processing Principles¨, (1990), p.351 84. R. W. K. Honeycombe and H. K. D. H. Bhadeshia, ¨STEELS: Microstructure and Properties¨, (1995), p.38 85. M. Cohen, The Strengthening of Steel, Trans TSM-AIME, 224 (1962), p.638 86. C. S. Roberts, Trans. AIME, 197 (1953), p.203 87. G. Wasserman, Mitt. Kaiser-Wilhelm-Inst. Eseinforch, 17 (1935), p.149 88. J. W. Christian, ¨Physical Props. Of Martensite and Bainite¨, ISI spec. rep. 93, London, (1965), p.1 89. F. J. Schone et al., Metall Trans., 2 (1971), p.2489 90. R. F. Mehl et al., Trans AIME, 105 (1933), p.215 91. A. B. Greninger and A. R. Triano, Trans. AIME, 140 (1940), p.307 92. A. R. Marder and G. Krauss, Trans ASM, 62 (1969), p.957 93. J. M. Chilton, C.J. Barton and G.R. Speich, J Iron Steel Inst, 208 (1970), p.184 94. F. J. Schoen, J.L. Nilles and W.S. Owen, Metall Trans, 2 (1971), p.2489 95. N.C. Law and P.R. Howell, Edmonds DV. Met Sci, 13 (1979), p.507 96. K. Wakasa and C.M. Wayman, Acta Metall. 29 (1981), p.973 97. B. P. J. Sanddvik and C.M. Wayman, Metall Trans A , 14A (1983), p.809 98. P. M. Kelly, A. Jostsons and R.G. Blake, Acta Metall Mater, 38 (1990), p.1075 99. M-X Zhang and P.M. Kelly, Scripta Mater, 47 (2002), p.749 100. G. V. Kurdjumov and G. Sashs, Z. Phys., 64 (1930), p.325 101. A. B. Greninger and A. R. Troiano, Trans. AIME, 185 (1949), p.590 102. E. C. Bain, Trans. AIME, 70 (1924), p.25 103. H. K. D. H. Bhadeshia,¨Worked Examples in the Geometry of Crystals¨, The Institute of Metals, (1987), p.9 104. H. K. D. H. Bhadeshia,¨Worked Examples in the Geometry of Crystals¨, The Institute of Metals, (1987), p.59 105. E. S. Machlin and M. Cohen, Trans. AIME, 191 (1951), p.1091 106. E. S. Machlin and M. Cohen, Trans. AIME, 194 (1952), p.1201 107. J. K. Mackenzic, Aust. J. Phys., 10 (1957), p.103 108. M. S. Wechsler, D. S. Lieberman and T. A. Read, Trans. AIME, 197 (1953), p.1053 109. J. S. Bowles and J. K. MacKenzie, Acta Metall., 2 (1954), p.129 110. J. W. Christian, ¨The Theory of Transformations in Metal and Alloys¨, Oxford, Pergamon Press, (1965) 111. R.L. Patterson and C.M. Wayman, Acta Metall. 14 (1966), p.347 112. K. Shimizu and Z. Nishiyama, Metallurgical Transactions, 3 (1972), p.1055 113. K. Shimizu, M.Oka and C.M. Wayman, Acta Metall. 19 (1971), p.1 114. A. J. Morton and C.M. Wayman, Acta Metall. 14 (1966), p.1567 115. M. Watanabe and C.M. Wayman, Metallurgical Transactions, 2 (1971), p.2221 116. E. O. Fearon and M. Bevis, Acta Metall. 22 (1974), p.991 117. T. N. Durlu, Scripta Metallurgica, 12 (1978), p.343 118. M. Dechamps and L.M. Brown, Acta Metall. 27 (1979), p.1281 119. D-Z Yang, B.P.J. Sandvik and C.M. Wayman, Metallurgical Transactions A, 15A (1984), p.1555 120. J. A. Whiteman and D.S. Sarma, Metallurgical Transactions, 5 (1974), p.163 121. P. J. Brofman, G.S. Ansell and G. Judd, Metallurgical Transactions A, 13A (1982), p.203 122. H. Okamoto and M. Oka, Metallurgical Transactions A, 16A (1985), p.2257 123. M. Oka and H. Okamoto, Materials Transactions JIM, 33 (1992), p.229 124. T. N. Durlu, Journal of Materials Science Letters, 16 (1997), p.1307 125. A. Shibata, S. Morito, T. Furuhara and T. Maki, Scripta Mater. 53 (2005), p.597 126. P. M. Inchkovich, Metall. I. Term. Obr., 1 (1954), p.171 127. S. Morito, J. Nishikawa and T. Maki, ISIJ Int., 43 (2003), pp.1475 128. G. R. Speich, Trans. TMS-AIME, 62 (1969), P.957 129. T. Y. Hus, Invitcd Paper, Presented at the Inter. Conf. on Displacive Phase Transformations and Their Applications in Materals Engineering., held in Illinois, TMS, (1998), p.119 130. J. W. Christian, ¨The Mechanism of Phase Transformations in Crystalline Solids¨, Inst. Of Metals, Monograph, 33 (1969) 131. G. R. Speich and P. R. Swann, J. Iron Steel Inst., 203 (1965), p.408 132. G. R. Speich, Trans. TME-AIME, 245 (1969), P.2553 133. S. K. Das and G. Thomas, Met. Trans, 1 (1970), p.325 134. A. R. Marder and A. O. Benscoter, Trans. ASM, 61 (1968), p.293 135. M. G. Mendiratta and G. Krauss, Metallurgical Transactions, 3 (1972), p.1755 136. R. G. Davies and C. L. Magee, Metallurgical Transactions, 3 (1972), p.307 137. R. P. Brobst and G. Krauss, Metallurgical Transactions, 5 (1974), p.457 138. R. W. Cahn and P. Haasen, ¨Physical Metallurgy¨ part Ⅱ, (1983), p.1041 139. G. Krauss, ¨STEELS: Heat Treatment and Processing Principles¨, (1990), p.45 140. P. M. Kelly and J. Nutting, Proc. Roy. Soc., 259 (1960), p.45 141. M. Oka and C. M. Wayman, Trans. ASM, 62 (1969), p.370 142. G. Krauss and W. Pitsch, Trans. TMS-AIME, 233 (1965), p.919 143. T. Maki, S. Shimooka and I. Tamura, Metallurgical Transactions, 2 (1971), p.2944 144. F. F. Lucas, Trans. ASST, 6 (1924), No.6 145. A. B. Greninger and A.R. Troiano, Trans. AIME, 185 (1949), P.590 146. J. F. Breedis and C.M. Wayman, Trans. AIME, 224 (1962), P.1128 147. H. Warlimont, Proc. 5th Intl. Conf. on Electron Microscopy, (1962), Academic Press, 1, HH6 148. K. Shimizu, J. Phys. Soc. Japan, 17 (1962), p.508 149. Z. Nishiyama, Sci Rep. Tohuku Imp. Univ., 23 (1934-35), pp.637 150. A. Kochendorfer and G. Otto, Archiv. Eisenhuttenw, 30 (1959), p.227 151. H.M. Otte, Acta Met., 8 (1960), p.892 152. A. Shibata, T. Murakami, S. Morito, T. Furuhara and T. Maki, Materials Transactions, 49 (2008), p.1242 153. A. Shibata, S. Morito, T. Furuhara and T. Maki, Acta Mater. 57 (2009), p.483 154. R.L. Patterson and C.M. Wayman, Acta Metall. 12 (1964), p.1306 155. T. Honma, J. Japan Inst. Metals, 21 (1957), p.263 156. T. Maki, Proceedings of 1st International Symposium on Steel Science, (2007), p.1. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46585 | - |
| dc.description.abstract | 退火雙晶經常發生在f.c.c金屬或合金中,它是由於在再結晶成長的過程中,偶發的堆疊錯誤所造成的。因此,退火雙晶對材料機械性質的影響甚是重要。我們需要更加地了解退火雙晶的晶界與一般晶粒的晶界對強度的貢獻是否有差異。本實驗的硬度量測顯示雙晶晶界的平均硬度值比一般晶粒晶界的平均硬度值僅稍微低了5Hv。而且從TEM的圖片也可以看出雙晶晶界除了有橫滑移的現象產生外,也可以阻擋差排的滑移,並在晶界上產生階梯狀的凸起。此階梯狀的凸起可視為差排在雙晶晶界上分解的證據。由於差排在雙晶晶界上分解是能量不利的,且分解後的差排可留在晶界上合併釋放,因此致使雙晶晶界的存在可維持一定的強度和極優異的韌性。所以,雙晶的密度也是影響機械性質的另一個重要因素。我們做一連串不同溫度的熱處理去量測雙晶的密度。發現雙晶的密度跟晶粒的大小成正比。這個結果符合Pande所提出的經驗式:N=Kt ln(D/ D0)。本實驗以C2600黃銅(α-brass)為材料量測到Kt值接近0.3。
相變雙晶通常是為了維持麻田散鐵相變時所需的非均質晶格不變應變而形成的。板片狀麻田散鐵最特殊的特徵就是在中心由非常高密度的相變雙晶所組成的中脊面區域。中脊面從以前就被視為是相變最先產生的區域,但相關文獻卻不太普及。因此,本實驗利用DSC實驗及TEM觀察thin plate和lenticular麻田散鐵內部中脊面的細部特徵以及它最初的形貌。由DSC實驗和試片在液態氮中經由不同時間的深冷處理觀察到thin plate麻田散鐵比lenticular麻田散鐵先形成。因此,我們可以推斷thin plate麻田散鐵可以轉變為lenticular麻田散鐵。TEM照片顯示thin plate麻田散鐵內佈滿了跨越整個板片的雙晶,而lenticular麻田散鐵則是由中脊區、雙晶擴展區和非雙晶區所組成。所以,前者是藉由雙晶來達到晶格不變應變,而後者是同時藉由雙晶和滑移兩種形式來達到麻田散鐵相變所需維持的晶格不變應變。此外,在回火實驗中觀察到由許多密集雙晶所構成的中脊區域提供了碳化物最有利的析出位置。且由回火後麻田散鐵內的基地在中脊區域有一小角度的旋轉,可推測中脊區為一高應力集中區,回火後會在此產生應力釋放使得中脊區的兩旁晶格有一個小角度的旋轉。高碳高鉻的不鏽鋼合金在600˚C回火0.5 ~ 2小時先產生M3C碳化物而後再形成M23C6碳化物。實驗發現前者和麻田散鐵基地維持Bagaryatsky方位關係,後者則接近Kurdjumov-Sashs方位關係。 | zh_TW |
| dc.description.abstract | Annealing twins usually form as a consequence of growth accidents or are presumed to form on stacking faults during the recrystallization of fcc metals and alloys. Therefore, the effects of annealing twins on mechanical properties are very important. It is desirable to determine the difference in strength contributions between general grain and twin boundaries. The results of hardness measurements have shown that the hardness of the twin boundary is a little lower (about 5Hv) than that of the general grain boundary. TEM micrographs indicated that slip lines can penetrate twin boundaries by cross-slip, or if obstructed, form ledges at the twin boundaries. The observations of the ledges at twin boundaries provided evidence for the dislocation dissociations. The energetically unfavorable dissociated reactions and the coalescent partial dislocations released at the twin boundary contribute to the maintained strength and excellent ductility of the twin boundaries. Additionally, a series of annealing treatments at different temperatures were carried out to measure twin density. The results show that annealing twin density depends on grain size. Pande's experiential equation for calculating the annealing twin density (N=Kt ln(D/ D0)) agrees well with our experimental results. The material depending value (Kt value) in Pande's experiential equation for C2600 brass was measured at about 0.3.
Transformation twins usually form in the high carbonic martensite transformation to maintain the inhomogeneous lattice - invariant. A typical characteristic of lenticular martensites is the appearance of an obvious high density twinned region (i.e., a midrib region). The midrib is considered to be the region where martensite transformation starts. In this work, it has been found that thin-plate and lenticular martensites co-existed in the specimens of Fe-1C-17Cr stainless steel. The substructures of thin plate martensites and lenticular martensites were examined using TEM, focusing on the details of the midrib region. The results of the DSC experiment and the course of the isothermal holding in the liquid nitrogen (-196˚C) indicated that the thin plate martensite formed first and lenticular martensite later. These results provide evidence to suggest that thin plate martensite can be transformed into lenticular martensite. Transmission electron microscopy revealed that thin plate martensite is composed of a set of internal transformation {112} twins crossing through the interior plate, while the lenticular martensite contained three subzones: the midrib region, extended twinned region, and untwinned region. The results obtained from TEM observations suggest that the transformations of thin plate martensite and lenticular martensite are initiated at the same midrib region. During the growth, the former keeps the lattice-invariant deformation mode of twinning, whereas the latter combines both twinning and slip modes. Additionally, the result of tempering experiments indicated that the midrib region of the martensite contained a large amount of twinned boundaries, which is the preferential position for carbide precipitations. TEM observation showed that tempering treatment resulted in the release of stress at the midrib region, i.e., the stress-concentrated region, and caused the martensite crystal to rotate slightly. TEM results indicated that M3C type carbide was dominant after tempering at 600˚C for 0.5 hours, but M23C6 type carbides was frequent after tempering for 1 and 2 hours. Analysis of diffraction patterns revealed that in this Fe-1C-17Cr alloy, Bagaryatsky OR was found between ferrite and M3C carbide, and Kurdjumov-Sashs OR was found between ferrite and M23C6 carbide. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:17:08Z (GMT). No. of bitstreams: 1 ntu-99-F93527015-1.pdf: 343760837 bytes, checksum: a25a9b4cfd5bd951cb8d6b9ec90b5790 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Contents
Chapter One General Introduction.......................................1 Chapter Two Literatures Survey.........................................3 2-1. Introduction of the Annealing Twins...................3 2-1-1. The mechanism of formation of annealing twins in f.c.c. metals .............................................3 2-1-2. The affected factors of the frequency of annealing twins......................................................6 2-1-3. The effect of twin boundaries on mechanical properties.................................................7 2-2. Introduction of the Deformation Twins.................9 2-2-1. The mechanism for the formation of deformation twins .....................................................9 2-2-2. Emissary dislocations..............................11 2-3. Introduction of the Transformation Twins.............11 2-3-1. Characteristics of diffusionless transformations...11 2-3-2. The solid solution of carbon in iron...............12 2-3-3. The orientation relationships of martensite transformation............................................13 2-3-4. The phenomenological theory of martensite crystallography...........................................15 2-3-5. The morphologies of martensites....................19 2-3-5-1. Lath martensites.................................20 2-3-5-2. Plate martensites................................21 2-3-6. The transformation twins in the plate or lenticular martensites...............................................22 2-3-6-1. The midrib region................................22 2-3-6-2. The twins region.................................25 2-3-6-3. The transformation mechanism changes from twinning to slip...................................................25 2-4. The tempering of martensite..........................27 2-4-1. Alloy carbides.....................................27 2-4-2. Alloy carbides in chromium steels..................28 Chapter Three Effect of annealing twins on hardness in the C2600 alpha-brass 3-1. Introduction ........................................46 3-2. Experimental Procedure ..............................47 3-3. Results and Discussion ..............................49 3-3-1. The difference of the hardness values for twinned and general boundaries ...................................49 3-3-2. The relationship between twin density and grain size......................................................50 3-3-3. The influence of the presence of annealing twins on the accuracy of Hall-Petch linear relation plot ..........51 3-3-4. TEM observation of twin boundary ..................53 3-4. Conclusions .........................................59 Chapter Four The observations of transformation twins in plate martensites 4-1. Introduction ........................................85 4-2. Experimental Procedure ..............................86 4-3. Results and Discussion ..............................87 4-3-1. The observation of microstructure in the homogenized specimen..................................................87 4-3-2. DSC, OM and SEM analysis in the martensite transformation............................................88 4-3-3. TEM observation on substructures in the martensite transformation............................................90 4-3-3-1. Thin plate martensite............................90 4-3-3-2. Lenticular martensite............................91 4-3-3-3. The origin and characteristic of midrib region...93 4-4. Conclusions .........................................98 Chapter Five The microstructure of tempered martensite 5-1. Introduction........................................143 5-2. Experimental Procedure..............................144 5-3. Results and Discussion..............................144 5-3-1. Optical micrograph and hardness of tempered martensite...............................................144 5-3-2. TEM observation in the tempered martensite........146 5-3-2-1. Martensite tempered at 600℃ for 0.5 hr.........146 5-3-2-2. Martensite tempered at 600℃ for 1 hr...........147 5-3-2-3. Martensite tempered at 600℃ for 2 hr...........151 5-4. Conclusions.........................................151 Chapter Six General conclusions......................................195 Future Works ............................................197 References ..............................................198 | |
| dc.language.iso | en | |
| dc.subject | 麻田散鐵中脊區 | zh_TW |
| dc.subject | 麻田散鐵相變態 | zh_TW |
| dc.subject | 雙晶 | zh_TW |
| dc.subject | 合金碳化物 | zh_TW |
| dc.subject | 黃銅 | zh_TW |
| dc.subject | TEM | zh_TW |
| dc.subject | 不鏽鋼 | zh_TW |
| dc.subject | TEM. | en |
| dc.subject | Twinning | en |
| dc.subject | Brass | en |
| dc.subject | Stainless steel | en |
| dc.subject | Martensite phase transformation | en |
| dc.subject | Martensite midrib | en |
| dc.subject | Alloy carbides | en |
| dc.title | 黃銅退火雙晶與高碳麻田散鐵相變雙晶之奈米顯微組織研究 | zh_TW |
| dc.title | Studies on nanostructure for annealing twin in α-brass and transformation twin in high-carbonic martensite | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林新智,侯春看,林東毅,王星豪,黃慶淵 | |
| dc.subject.keyword | 雙晶,黃銅,不鏽鋼,麻田散鐵相變態,麻田散鐵中脊區,合金碳化物,TEM, | zh_TW |
| dc.subject.keyword | Twinning,Brass,Stainless steel,Martensite phase transformation,Martensite midrib,Alloy carbides,TEM., | en |
| dc.relation.page | 202 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 335.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
