Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46585
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊哲人(Jer-Ren Yang)
dc.contributor.authorHsin-Yi Leeen
dc.contributor.author李欣怡zh_TW
dc.date.accessioned2021-06-15T05:17:08Z-
dc.date.available2013-07-22
dc.date.copyright2010-07-22
dc.date.issued2010
dc.date.submitted2010-07-20
dc.identifier.citationReferences
1. H. Carpenter and S. Tamura, Proc. R. Soc. (A), 113 (1926), p.161
2. C. H. Mathewson, Proc. Inst. Metals Div., A.I.M.E., 7 (1928), p.1928
3. C. H. Mathewson, Trans. Am. Soc. Metals, 32 (1944), p.38
4. W. G. Burgers, Nature Lond. 157 (1946), p.76
5. J. E. Burke and Y. G. Shiau, Trans. A.I.M.E., 175 (1948), p.141
6. W. G. Burgers, Physica, 15 (1949), p.92
7. R. Maddin, H. Mathewson and R.Hibbard, Trans. A.I.M.E., 185 (1949), p.655
8. J. E. Burke, Trans. A.I.M.E., 188 (1950), p.1324
9. Discussion of ref. 7, Trans. A.I.M.E., 188 (1950), p.1020
10. R. L. Fullman and J. C. Fisher, J. appl. Phys., 22 (1951), p.1350
11. S. Dash and N. Brown, Acta Metall. 11 (1963), p.1067
12. J. P. Nielsen, Acta Metall. 15 (1967), p.1083
13. H. Gleiter, Acta Metall. 17 (1969), p.1421
14. P. Merklen, E. Furubayashi and H. Yoshida, Trans. Japan Inst. Metals, 11 (1970), p.252
15. G. Bäro and H. Gleiter, Z. Metallk., 63 (1972), p.661
16. G. Gindraux and W. Form, J. Inst. Metals, 101 (1973), p.85
17. M.A. Meyers and L.E. Murr , Acta Metall. 26 (1978), p.951
18. S. Mahajan , C.S. Pande , M.A. Imam and B.B.Rath , Acta Metall. 45 (1997), p.2633
19. L. E. Murr, Interfacial Phenomena in Metals and Alloys. Addison-Wesley, Reading, Mass (1975)
20. R. L. Fullman, J. appl. Phys., 22 (1951), p.456
21. C. M. Sargent, Trans. Metal. Soc. A.I.M.E., 242 (1968), p.1188
22. D. Vaughan, Phil. Mag., 22 (1970), p.1003
23. K. T. Aust and J. W. Rutter, Trans. Metal. Soc. A.I.M.E., 215 (1959), p.820
24. H. Hu and C.S. Smith, Acta Metall. 4 (1956), p. 638.
25. C.S. Pande, M.A. Imam and B.B. Rath, Metall. Trans. A 21A (1990), p. 2891.
26. Q. Li, J.R. Cahoon and N.L. Richards, Scripta Metall. 55 (2006), p. 1155.
27. G. Gottstein, Acta Metall. 32 (1984), p. 1117.
28. A. Berger, P.J. Wilbrandt, F. Ernst, U. Klement and P. Haasen, Prog. Mater. Sci. 32 (1988), p. 2.
29. G.C. Hasson and C. Goux, Scripta Metall. 5 (1971), p. 889.
30. P.J. Wilbrandt and P. Haasen, Z. Metallkd. 71 (1980), p. 385.
31. P.J. Goodhew, Metal Sci. 13 (1979), p. 108.
32. L.C. Lim and R. Raj, Acta Metall. 32 (1984), p. 1177.
33. C.M.F. Rae, Phil. Mag. A 44 (1981), p. 1395.
34. W. Form, G. Gindraux and V. Mlyncar, Metal Sci. 14 (1980), p. 16.
35. V. Randle, Acta Metall. 52 (2004), p. 4067.
36. D.P. Field, R.C. Eames and T.M. Lillo, Scripta Metall. 54 (2006), p. 983.
37. D. Kuhlmann-Wilsdorf and H. Wilsdorf, Acta Metall., 1 (1953), p. 394.
38. W. J. Babiak and F. N. Rhines, Trans. Metall. Soc. AIME, 218 (1960), p.21.
39. R.C. Boettner, A.J. Mcevily and Y.C. Liu, Philos. Mag., 10 (1964), p.95
40. E. Macherauch, Z. Metallkd., 59 (1968), p.669
41. K. Farrell and J.T. Houston, Scr. Metall., 5 (1971), p.463
42. S. Miura and Y. Saeki , Trans JIM , 17 (1976), p.253
43. L.C. Lim and R. Raj, J. Phys., 46 (1985), p.581
44. A.W. Thompson, Metallography, 5 (1972), p.366
45. C.J. Youngdahl, J.R. Weertman, R.C. Hugo and H.H. Kung, Scripta Mater. 44 (2001), p.1475
46. R. Armstrong, J. Godd, R.M. Douhwaite and N.J. Petch, Philos. Mag., 7 (1972), p.42
47. K. Nakanishi and H. Suzuki, Trans. Jpn. Inst. Met., 15 (1974), p.435
48. H. Suzuki and K. Nakanishi, Trans. Jpn. Inst. Met., 16 (1975), p.17
49. E.M. Schulson, T.P. Weihs, D.V. Viens and I. Baker, Acta Metall., 33 (1985), p.1587
50. J.W. Wyrzykowski, K.J. Kurzydlowski and W. Przetakiewicz, Arch. Metall. 3 (1987), p.113
51. R.A. Varin and K.J. Kurzydlowski, Mater. Sci. and Eng. A, 101 (1988), p.221
52. J. Mizera and J.W. Wyrzykowski, Mater. Sci. and Eng. A, 112 (1989), p.39
53. J.T. Evans, Scripta Metall., 8 (1974), p.1099
54. L.C. Lim, Scripta Metall., 18 (1984), p.1139
55. L. Remy, Acta Metall., 25 (1977), p.711
56. L. Remy, Metallurgical Transactions A, 12 (1981), p.387
57. S. Mahajan and G.Y. Chin, Acta Metall., 21 (1973), p.173
58. Z-H Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn and H. Gleiter, Scripta Mater., 54 (2006), p.1163
59. Z-H Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter and H. Hahn, Acta Mater. 56 (2008), p.1126
60. L. Lu, M. Dao, T. Zhu and J. Li, Scripta Mater., 60 (2009), p.1062
61. R.G. Hoagland, R.J. Kurtz and C.H. Henager Jr., Scripta Mater., 50 (2004), p.775
62. J. Chen, L. Lu and K. Lu, Scripta Mater., 54 (2006), p.1913
63. J.A. Knapp and D.M. Follstaedt, J. Mater. Res., 19 (2004), p.218
64. C.A. Schuh, T.G. Nieh and H. Iwasaki, Acta Mater., 51 (2003), p.431
65. H.Q. Li and F. Ebrihimi, Acta Mater., 54 (2006), p.2877
66. L. Lu, Y. Shen, X. Chen, L. Qian and K. Lu, Science, 304 (2004), p.422
67. L. Lu, X. Cheng, X. Huang and K. Lu, 323 (2009), p.607
68. K. Lu, L. Lu and S. Suresh, Science, 324 (2009), p.349
69. M. Dao, L. Lu, Y.F. Shen and S. Suresh, Acta Mater. 54 (2006), p.5421
70. T. Watanabe, Res. Mech., 11 (1984), p.47
71. A.L. Pinto, C.S.C. Viana and L.H. Almeida, Mater. Sci. and Eng. A, 445-446 (2007), p.14
72. C.S. Pande , M.A. Imam , B.B. Rath , Met.Trans.A , 21A (1990), p.2891
73. L.E. Murr, Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, (1975), p.131
74. C.S. Pande, B.B. Rath and M.A. Imam, Mater. Sci. and Eng. A, 367 (2004), p.171
75. J.P. Hirth and R.W. Balluffi, Acta Metall., 21 (1973), p.929
76. Robert E. Reed-Hill and Reza Abbaschian, Physical Metallurgy Principles, (1992) 3rd ed., p.540
77. Johannes Weertman and Julia R. Weertman, Elementary Dislocation Theory, (1992), p.139-146
78. J. W. Christian, ¨Decomposition of Austenite by Diffusional Proccsses¨, Interscience, New York, (1962), p.371
79. G. Krauss and A.R. Marder, Metallurgical Transactions, 2 (1971), p.2343
80. H. K. D. H. Bhadeshia,¨Worked Examples in the Geometry of Crystals¨, The Institute of Metals, (1987).
81. D. A. Porter, K. E. Easterling, ¨Phase transformations in metals and alloys¨, London, New York, (1992).
82. A. H. Cottrell, ¨Theoretical Structural Metallurgy¨, Edward Arnold, (1962)
83. G. Krauss, ¨STEELS: Heat Treatment and Processing Principles¨, (1990), p.351
84. R. W. K. Honeycombe and H. K. D. H. Bhadeshia, ¨STEELS: Microstructure and Properties¨, (1995), p.38
85. M. Cohen, The Strengthening of Steel, Trans TSM-AIME, 224 (1962), p.638
86. C. S. Roberts, Trans. AIME, 197 (1953), p.203
87. G. Wasserman, Mitt. Kaiser-Wilhelm-Inst. Eseinforch, 17 (1935), p.149
88. J. W. Christian, ¨Physical Props. Of Martensite and Bainite¨, ISI spec. rep. 93, London, (1965), p.1
89. F. J. Schone et al., Metall Trans., 2 (1971), p.2489
90. R. F. Mehl et al., Trans AIME, 105 (1933), p.215
91. A. B. Greninger and A. R. Triano, Trans. AIME, 140 (1940), p.307
92. A. R. Marder and G. Krauss, Trans ASM, 62 (1969), p.957
93. J. M. Chilton, C.J. Barton and G.R. Speich, J Iron Steel Inst, 208 (1970), p.184
94. F. J. Schoen, J.L. Nilles and W.S. Owen, Metall Trans, 2 (1971), p.2489
95. N.C. Law and P.R. Howell, Edmonds DV. Met Sci, 13 (1979), p.507
96. K. Wakasa and C.M. Wayman, Acta Metall. 29 (1981), p.973
97. B. P. J. Sanddvik and C.M. Wayman, Metall Trans A , 14A (1983), p.809
98. P. M. Kelly, A. Jostsons and R.G. Blake, Acta Metall Mater, 38 (1990), p.1075
99. M-X Zhang and P.M. Kelly, Scripta Mater, 47 (2002), p.749
100. G. V. Kurdjumov and G. Sashs, Z. Phys., 64 (1930), p.325
101. A. B. Greninger and A. R. Troiano, Trans. AIME, 185 (1949), p.590
102. E. C. Bain, Trans. AIME, 70 (1924), p.25
103. H. K. D. H. Bhadeshia,¨Worked Examples in the Geometry of Crystals¨, The Institute of Metals, (1987), p.9
104. H. K. D. H. Bhadeshia,¨Worked Examples in the Geometry of Crystals¨, The Institute of Metals, (1987), p.59
105. E. S. Machlin and M. Cohen, Trans. AIME, 191 (1951), p.1091
106. E. S. Machlin and M. Cohen, Trans. AIME, 194 (1952), p.1201
107. J. K. Mackenzic, Aust. J. Phys., 10 (1957), p.103
108. M. S. Wechsler, D. S. Lieberman and T. A. Read, Trans. AIME, 197 (1953), p.1053
109. J. S. Bowles and J. K. MacKenzie, Acta Metall., 2 (1954), p.129
110. J. W. Christian, ¨The Theory of Transformations in Metal and Alloys¨, Oxford, Pergamon Press, (1965)
111. R.L. Patterson and C.M. Wayman, Acta Metall. 14 (1966), p.347
112. K. Shimizu and Z. Nishiyama, Metallurgical Transactions, 3 (1972), p.1055
113. K. Shimizu, M.Oka and C.M. Wayman, Acta Metall. 19 (1971), p.1
114. A. J. Morton and C.M. Wayman, Acta Metall. 14 (1966), p.1567
115. M. Watanabe and C.M. Wayman, Metallurgical Transactions, 2 (1971), p.2221
116. E. O. Fearon and M. Bevis, Acta Metall. 22 (1974), p.991
117. T. N. Durlu, Scripta Metallurgica, 12 (1978), p.343
118. M. Dechamps and L.M. Brown, Acta Metall. 27 (1979), p.1281
119. D-Z Yang, B.P.J. Sandvik and C.M. Wayman, Metallurgical Transactions A, 15A (1984), p.1555
120. J. A. Whiteman and D.S. Sarma, Metallurgical Transactions, 5 (1974), p.163
121. P. J. Brofman, G.S. Ansell and G. Judd, Metallurgical Transactions A, 13A (1982), p.203
122. H. Okamoto and M. Oka, Metallurgical Transactions A, 16A (1985), p.2257
123. M. Oka and H. Okamoto, Materials Transactions JIM, 33 (1992), p.229
124. T. N. Durlu, Journal of Materials Science Letters, 16 (1997), p.1307
125. A. Shibata, S. Morito, T. Furuhara and T. Maki, Scripta Mater. 53 (2005), p.597
126. P. M. Inchkovich, Metall. I. Term. Obr., 1 (1954), p.171
127. S. Morito, J. Nishikawa and T. Maki, ISIJ Int., 43 (2003), pp.1475
128. G. R. Speich, Trans. TMS-AIME, 62 (1969), P.957
129. T. Y. Hus, Invitcd Paper, Presented at the Inter. Conf. on Displacive Phase Transformations and Their Applications in Materals Engineering., held in Illinois, TMS, (1998), p.119
130. J. W. Christian, ¨The Mechanism of Phase Transformations in Crystalline Solids¨, Inst. Of Metals, Monograph, 33 (1969)
131. G. R. Speich and P. R. Swann, J. Iron Steel Inst., 203 (1965), p.408
132. G. R. Speich, Trans. TME-AIME, 245 (1969), P.2553
133. S. K. Das and G. Thomas, Met. Trans, 1 (1970), p.325
134. A. R. Marder and A. O. Benscoter, Trans. ASM, 61 (1968), p.293
135. M. G. Mendiratta and G. Krauss, Metallurgical Transactions, 3 (1972), p.1755
136. R. G. Davies and C. L. Magee, Metallurgical Transactions, 3 (1972), p.307
137. R. P. Brobst and G. Krauss, Metallurgical Transactions, 5 (1974), p.457
138. R. W. Cahn and P. Haasen, ¨Physical Metallurgy¨ part Ⅱ, (1983), p.1041
139. G. Krauss, ¨STEELS: Heat Treatment and Processing Principles¨, (1990), p.45
140. P. M. Kelly and J. Nutting, Proc. Roy. Soc., 259 (1960), p.45
141. M. Oka and C. M. Wayman, Trans. ASM, 62 (1969), p.370
142. G. Krauss and W. Pitsch, Trans. TMS-AIME, 233 (1965), p.919
143. T. Maki, S. Shimooka and I. Tamura, Metallurgical Transactions, 2 (1971), p.2944
144. F. F. Lucas, Trans. ASST, 6 (1924), No.6
145. A. B. Greninger and A.R. Troiano, Trans. AIME, 185 (1949), P.590
146. J. F. Breedis and C.M. Wayman, Trans. AIME, 224 (1962), P.1128
147. H. Warlimont, Proc. 5th Intl. Conf. on Electron Microscopy, (1962), Academic Press, 1, HH6
148. K. Shimizu, J. Phys. Soc. Japan, 17 (1962), p.508
149. Z. Nishiyama, Sci Rep. Tohuku Imp. Univ., 23 (1934-35), pp.637
150. A. Kochendorfer and G. Otto, Archiv. Eisenhuttenw, 30 (1959), p.227
151. H.M. Otte, Acta Met., 8 (1960), p.892
152. A. Shibata, T. Murakami, S. Morito, T. Furuhara and T. Maki, Materials Transactions, 49 (2008), p.1242
153. A. Shibata, S. Morito, T. Furuhara and T. Maki, Acta Mater. 57 (2009), p.483
154. R.L. Patterson and C.M. Wayman, Acta Metall. 12 (1964), p.1306
155. T. Honma, J. Japan Inst. Metals, 21 (1957), p.263
156. T. Maki, Proceedings of 1st International Symposium on Steel Science, (2007), p.1.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46585-
dc.description.abstract退火雙晶經常發生在f.c.c金屬或合金中,它是由於在再結晶成長的過程中,偶發的堆疊錯誤所造成的。因此,退火雙晶對材料機械性質的影響甚是重要。我們需要更加地了解退火雙晶的晶界與一般晶粒的晶界對強度的貢獻是否有差異。本實驗的硬度量測顯示雙晶晶界的平均硬度值比一般晶粒晶界的平均硬度值僅稍微低了5Hv。而且從TEM的圖片也可以看出雙晶晶界除了有橫滑移的現象產生外,也可以阻擋差排的滑移,並在晶界上產生階梯狀的凸起。此階梯狀的凸起可視為差排在雙晶晶界上分解的證據。由於差排在雙晶晶界上分解是能量不利的,且分解後的差排可留在晶界上合併釋放,因此致使雙晶晶界的存在可維持一定的強度和極優異的韌性。所以,雙晶的密度也是影響機械性質的另一個重要因素。我們做一連串不同溫度的熱處理去量測雙晶的密度。發現雙晶的密度跟晶粒的大小成正比。這個結果符合Pande所提出的經驗式:N=Kt ln(D/ D0)。本實驗以C2600黃銅(α-brass)為材料量測到Kt值接近0.3。
相變雙晶通常是為了維持麻田散鐵相變時所需的非均質晶格不變應變而形成的。板片狀麻田散鐵最特殊的特徵就是在中心由非常高密度的相變雙晶所組成的中脊面區域。中脊面從以前就被視為是相變最先產生的區域,但相關文獻卻不太普及。因此,本實驗利用DSC實驗及TEM觀察thin plate和lenticular麻田散鐵內部中脊面的細部特徵以及它最初的形貌。由DSC實驗和試片在液態氮中經由不同時間的深冷處理觀察到thin plate麻田散鐵比lenticular麻田散鐵先形成。因此,我們可以推斷thin plate麻田散鐵可以轉變為lenticular麻田散鐵。TEM照片顯示thin plate麻田散鐵內佈滿了跨越整個板片的雙晶,而lenticular麻田散鐵則是由中脊區、雙晶擴展區和非雙晶區所組成。所以,前者是藉由雙晶來達到晶格不變應變,而後者是同時藉由雙晶和滑移兩種形式來達到麻田散鐵相變所需維持的晶格不變應變。此外,在回火實驗中觀察到由許多密集雙晶所構成的中脊區域提供了碳化物最有利的析出位置。且由回火後麻田散鐵內的基地在中脊區域有一小角度的旋轉,可推測中脊區為一高應力集中區,回火後會在此產生應力釋放使得中脊區的兩旁晶格有一個小角度的旋轉。高碳高鉻的不鏽鋼合金在600˚C回火0.5 ~ 2小時先產生M3C碳化物而後再形成M23C6碳化物。實驗發現前者和麻田散鐵基地維持Bagaryatsky方位關係,後者則接近Kurdjumov-Sashs方位關係。
zh_TW
dc.description.abstractAnnealing twins usually form as a consequence of growth accidents or are presumed to form on stacking faults during the recrystallization of fcc metals and alloys. Therefore, the effects of annealing twins on mechanical properties are very important. It is desirable to determine the difference in strength contributions between general grain and twin boundaries. The results of hardness measurements have shown that the hardness of the twin boundary is a little lower (about 5Hv) than that of the general grain boundary. TEM micrographs indicated that slip lines can penetrate twin boundaries by cross-slip, or if obstructed, form ledges at the twin boundaries. The observations of the ledges at twin boundaries provided evidence for the dislocation dissociations. The energetically unfavorable dissociated reactions and the coalescent partial dislocations released at the twin boundary contribute to the maintained strength and excellent ductility of the twin boundaries. Additionally, a series of annealing treatments at different temperatures were carried out to measure twin density. The results show that annealing twin density depends on grain size. Pande's experiential equation for calculating the annealing twin density (N=Kt ln(D/ D0)) agrees well with our experimental results. The material depending value (Kt value) in Pande's experiential equation for C2600 brass was measured at about 0.3.
Transformation twins usually form in the high carbonic martensite transformation to maintain the inhomogeneous lattice - invariant. A typical characteristic of lenticular martensites is the appearance of an obvious high density twinned region (i.e., a midrib region). The midrib is considered to be the region where martensite transformation starts. In this work, it has been found that thin-plate and lenticular martensites co-existed in the specimens of Fe-1C-17Cr stainless steel. The substructures of thin plate martensites and lenticular martensites were examined using TEM, focusing on the details of the midrib region. The results of the DSC experiment and the course of the isothermal holding in the liquid nitrogen (-196˚C) indicated that the thin plate martensite formed first and lenticular martensite later. These results provide evidence to suggest that thin plate martensite can be transformed into lenticular martensite. Transmission electron microscopy revealed that thin plate martensite is composed of a set of internal transformation {112} twins crossing through the interior plate, while the lenticular martensite contained three subzones: the midrib region, extended twinned region, and untwinned region. The results obtained from TEM observations suggest that the transformations of thin plate martensite and lenticular martensite are initiated at the same midrib region. During the growth, the former keeps the lattice-invariant deformation mode of twinning, whereas the latter combines both twinning and slip modes.
Additionally, the result of tempering experiments indicated that the midrib region of the martensite contained a large amount of twinned boundaries, which is the preferential position for carbide precipitations. TEM observation showed that tempering treatment resulted in the release of stress at the midrib region, i.e., the stress-concentrated region, and caused the martensite crystal to rotate slightly. TEM results indicated that M3C type carbide was dominant after tempering at 600˚C for 0.5 hours, but M23C6 type carbides was frequent after tempering for 1 and 2 hours. Analysis of diffraction patterns revealed that in this Fe-1C-17Cr alloy, Bagaryatsky OR was found between ferrite and M3C carbide, and Kurdjumov-Sashs OR was found between ferrite and M23C6 carbide.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:17:08Z (GMT). No. of bitstreams: 1
ntu-99-F93527015-1.pdf: 343760837 bytes, checksum: a25a9b4cfd5bd951cb8d6b9ec90b5790 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
Chapter One
General Introduction.......................................1
Chapter Two
Literatures Survey.........................................3
2-1. Introduction of the Annealing Twins...................3
2-1-1. The mechanism of formation of annealing twins in f.c.c. metals .............................................3
2-1-2. The affected factors of the frequency of annealing twins......................................................6
2-1-3. The effect of twin boundaries on mechanical properties.................................................7
2-2. Introduction of the Deformation Twins.................9
2-2-1. The mechanism for the formation of deformation twins .....................................................9
2-2-2. Emissary dislocations..............................11
2-3. Introduction of the Transformation Twins.............11
2-3-1. Characteristics of diffusionless transformations...11
2-3-2. The solid solution of carbon in iron...............12
2-3-3. The orientation relationships of martensite transformation............................................13
2-3-4. The phenomenological theory of martensite crystallography...........................................15
2-3-5. The morphologies of martensites....................19
2-3-5-1. Lath martensites.................................20
2-3-5-2. Plate martensites................................21
2-3-6. The transformation twins in the plate or lenticular martensites...............................................22
2-3-6-1. The midrib region................................22
2-3-6-2. The twins region.................................25
2-3-6-3. The transformation mechanism changes from twinning to slip...................................................25
2-4. The tempering of martensite..........................27
2-4-1. Alloy carbides.....................................27
2-4-2. Alloy carbides in chromium steels..................28

Chapter Three
Effect of annealing twins on hardness in the C2600 alpha-brass
3-1. Introduction ........................................46
3-2. Experimental Procedure ..............................47
3-3. Results and Discussion ..............................49
3-3-1. The difference of the hardness values for twinned and general boundaries ...................................49
3-3-2. The relationship between twin density and grain size......................................................50
3-3-3. The influence of the presence of annealing twins on the accuracy of Hall-Petch linear relation plot ..........51
3-3-4. TEM observation of twin boundary ..................53
3-4. Conclusions .........................................59
Chapter Four
The observations of transformation twins in plate martensites
4-1. Introduction ........................................85
4-2. Experimental Procedure ..............................86
4-3. Results and Discussion ..............................87
4-3-1. The observation of microstructure in the homogenized specimen..................................................87
4-3-2. DSC, OM and SEM analysis in the martensite transformation............................................88
4-3-3. TEM observation on substructures in the martensite transformation............................................90
4-3-3-1. Thin plate martensite............................90
4-3-3-2. Lenticular martensite............................91
4-3-3-3. The origin and characteristic of midrib region...93
4-4. Conclusions .........................................98
Chapter Five
The microstructure of tempered martensite
5-1. Introduction........................................143
5-2. Experimental Procedure..............................144
5-3. Results and Discussion..............................144
5-3-1. Optical micrograph and hardness of tempered martensite...............................................144
5-3-2. TEM observation in the tempered martensite........146
5-3-2-1. Martensite tempered at 600℃ for 0.5 hr.........146
5-3-2-2. Martensite tempered at 600℃ for 1 hr...........147
5-3-2-3. Martensite tempered at 600℃ for 2 hr...........151
5-4. Conclusions.........................................151
Chapter Six
General conclusions......................................195
Future Works ............................................197
References ..............................................198
dc.language.isoen
dc.subject麻田散鐵中脊區zh_TW
dc.subject麻田散鐵相變態zh_TW
dc.subject雙晶zh_TW
dc.subject合金碳化物zh_TW
dc.subject黃銅zh_TW
dc.subjectTEMzh_TW
dc.subject不鏽鋼zh_TW
dc.subjectTEM.en
dc.subjectTwinningen
dc.subjectBrassen
dc.subjectStainless steelen
dc.subjectMartensite phase transformationen
dc.subjectMartensite midriben
dc.subjectAlloy carbidesen
dc.title黃銅退火雙晶與高碳麻田散鐵相變雙晶之奈米顯微組織研究zh_TW
dc.titleStudies on nanostructure for annealing twin in α-brass and transformation twin in high-carbonic martensiteen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee林新智,侯春看,林東毅,王星豪,黃慶淵
dc.subject.keyword雙晶,黃銅,不鏽鋼,麻田散鐵相變態,麻田散鐵中脊區,合金碳化物,TEM,zh_TW
dc.subject.keywordTwinning,Brass,Stainless steel,Martensite phase transformation,Martensite midrib,Alloy carbides,TEM.,en
dc.relation.page202
dc.rights.note有償授權
dc.date.accepted2010-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
335.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved