Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46571
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王振男
dc.contributor.authorWen-Yen Fengen
dc.contributor.author馮文彥zh_TW
dc.date.accessioned2021-06-15T05:16:16Z-
dc.date.copyright2010-08-09
dc.date.issued2010
dc.date.submitted2010-07-21
dc.identifier.citation[1]Alinhac, S. and Baouendi, M. S., Uniqueness for the characteristic Cauchy problem and strong unique continuation for higher order partial differential inequalities, Amer. J. Math., 102 (1980), 179--217.
[2]Aronszajn, N., Krzywcki, A. and Szarski, J., A unique continuation theorem for exterior differential forms on Riemanian manifolds, Ark. Mat., 4 (1962), 417--453.
[3]Grammatico, C., Unicita forte per operatori ellittici, Tesi di Dottorato, Univ. degli Studi di Pisa (1997).
[4]Ikoma, Makoto; Yamada, Osanobu Strong unique continuation property of two-dimensional Dirac equations with Aharonov-Bohm fields. (English summary) Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 9, 158--161.
[5]Jerison, D., Carleman inequalities for the Dirac and Laplace operator and unique continuation, Adv. Math., 63 (1986), 118--134.
[6]Jerison, D. and Kenig, C., Unique continuation and absence of positive eigenvalues for Schrodinger operators, Ann. of Math., 121 (1985), 463--492.
[7]Kim, Yonne Mi Carleman inequalities for the Dirac operator and strong unique continuation. Proc. Amer. Math. Soc. 123 (1995), no. 7, 2103--2112.
[8]Laura De Carli and Takashi Okaji, Strong Unique Continuation Property for the Dirac Equation, Publ. Res. Inst. Math. Sci., 35, 825-846(1999)
[9]M.-E. Craioveanu, Mircea Puta, Themistocles M. Rassias, Mircea Craioveanu, Old and New Aspects in Spectral Geometry, Mia., 155-162(2001)
[10]Niculae Mandache. Some Remarks Concerning Unique Continuation for the Dirac Operator. Letters in Mathematical Physics 3h 85-92, 1994
[11]Pan, Y. F., Unique continuation for Schrodinger operators with singular potentials, Comm. Partial Diff. Eqs., 17 (1992), 953--965.
[12]T. Carleman, {it Sur un problem d'unicite les systems d'equations aux divees partielles a deux variables independentes}, Ark. Mat. Astr. Fys., 26B, (1939), 1-9.
[13]Regbaoui, R., Strong unique continuation results for differential inequalities, J. Funct. Anal., 148 (1997), 508--523.
[14]Regbaoui, R., Strong unique continuation for second order elliptic differential operators, J. Diff. Eqs., 141 (1997), 201--217.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46571-
dc.description.abstract這篇論文是狄拉克算子強唯一連續延拓性的統整。我們知道在歐氏空間中一函數遞減至零的速度比任何多項式還要迅速,該函數仍然可能不顯然。而一微分方程或微分不等式擁有強唯一連續延拓性,指的是該微分方程或不等式的解,若於定義域上之某一點其遞減至零的速度,處處比任何多項式還要迅速,則該函數必等於零在連通的定義域上。zh_TW
dc.description.abstractThis paper is a survey of strong unique continuation property for the Dirac equation. We know that a function can be non-triviual even if it vanishes of infinite order at some point. We say a differential equation(or inequality) has strong unique continuation property(SUCP) if u is a solution of this differential equation (or inequality) and u vanishes of infinite order at some x_{0}, then u is identically zero.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:16:16Z (GMT). No. of bitstreams: 1
ntu-99-R97221012-1.pdf: 461287 bytes, checksum: db248e4d4436251a6b16e4b88e7911f8 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書……………………………………………………………….. i
誌謝………………………………………………………………………………... ii
中文摘要………………………………………………………………………….. iii
英文摘要………………………………………………………………………….. iv
第一章 簡介…………………………………………………………………….. 1
第二章 部份結果…………………………………………………………….. 4
第三章 定理六之證明…………………………………………………………. 11
第四章 定理七.八之證明…………………………………………………….... 25
第五章 定理九.十之證明……………………………………………………… 32
參考文獻…………………………………………………………………….…… 45
dc.language.isoen
dc.subject卡勒門不等式zh_TW
dc.subject狄拉克方程zh_TW
dc.subject狄拉克算子zh_TW
dc.subject唯一連續延拓性zh_TW
dc.subject強唯一連續延拓性zh_TW
dc.subjectDirac operatoren
dc.subjectCarleman-type inequalitiesen
dc.subjectStrong unique continuation propertyen
dc.subjectunique continuation propertyen
dc.subjectDirac equationen
dc.title狄拉克算子強唯一連續延拓性的統整zh_TW
dc.titleThe strong unique continuation property for the Dirac operatoren
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊全,林景隆
dc.subject.keyword狄拉克方程,狄拉克算子,唯一連續延拓性,強唯一連續延拓性,卡勒門不等式,zh_TW
dc.subject.keywordDirac operator,Dirac equation,unique continuation property,Strong unique continuation property,Carleman-type inequalities,en
dc.relation.page46
dc.rights.note有償授權
dc.date.accepted2010-07-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
450.48 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved