Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46567
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁啟惠(Chi-Huey Wong)
dc.contributor.authorCheng-Chi Wangen
dc.contributor.author王正琪zh_TW
dc.date.accessioned2021-06-15T05:16:02Z-
dc.date.available2015-07-26
dc.date.copyright2010-07-26
dc.date.issued2010
dc.date.submitted2010-07-21
dc.identifier.citation1. Roth, J., Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem. Rev. 2002, 102 (2), 285-303.
2. Varki, A., Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993, 3 (2), 97-130.
3. Koeller, K. M.; Wong, C.-H., Emerging themes in medicinal glycoscience. Nat. Biotechnol. 2000, 18 (8), 835-41.
4. Bertozzi, C. R.; Kiessling, L. L., Chemical glycobiology. Science 2001, 291 (5512), 2357-64.
5. Wong, C.-H., Protein glycosylation: new challenges and opportunities. J. Org. Chem. 2005, 70 (11), 4219-25.
6. Lowe, J. B.; Marth, J. D., A genetic approach to Mammalian glycan function. Annu. Rev. Biochem 2003, 72, 643-91.
7. Weis, W. I.; Taylor, M. E.; Drickamer, K., The C-type lectin superfamily in the immune system. Immunol. Rev. 1998, 163, 19-34.
8. Mitchell, D. A.; Fadden, A. J.; Drickamer, K., A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J. Biol. Chem. 2001, 276 (31), 28939-45.
9. Geijtenbeek, T. B.; Kwon, D. S.; Torensma, R.; van Vliet, S. J.; van Duijnhoven, G. C.; Middel, J.; Cornelissen, I. L.; Nottet, H. S.; KewalRamani, V. N.; Littman, D. R.; Figdor, C. G.; van Kooyk, Y., DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000, 100 (5), 587-97.
10. Lopez, P. H.; Schnaar, R. L., Gangliosides in cell recognition and membrane protein regulation. Curr. Opin. Struct. Biol. 2009, 19 (5), 549-57.
11. Hakomori, S.; Kannagi, R., Glycosphingolipids as tumor-associated and differentiation markers. J. Natl. Cancer Inst. 1983, 71 (2), 231-51.
12. Sharon, N.; Lis, H., History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 2004, 14 (11), 53R-62R.
13. Liang, C. H.; Wu, C.-Y., Glycan array: a powerful tool for glycomics studies. Expert Rev Proteomics 2009, 6 (6), 631-45.
14. Plante, O. J.; Palmacci, E. R.; Seeberger, P. H., Automated solid-phase synthesis of oligosaccharides. Science 2001, 291 (5508), 1523-7.
15. Lee, J. C.; Greenberg, W. A.; Wong, C.-H., Programmable reactivity-based one-pot oligosaccharide synthesis. Nat Protoc 2006, 1 (6), 3143-52.
16. Huang, C. Y.; Thayer, D. A.; Chang, A. Y.; Best, M. D.; Hoffmann, J.; Head, S.; Wong, C.-H., Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proc Natl Acad Sci U S A 2006, 103 (1), 15-20.
17. Ritter, T. K.; Mong, K. K.; Liu, H.; Nakatani, T.; Wong, C.-H., A programmable one-pot oligosaccharide synthesis for diversifying the sugar domains of natural products: a case study of vancomycin. Angew Chem Int Ed Engl 2003, 42 (38), 4657-60.
18. Koeller, K. M.; Wong, C.-H., Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. Chem Rev 2000, 100 (12), 4465-94.
19. Burkhart, F.; Zhang, Z.; Wacowich-Sgarbi, S.; Wong, C.-H., Synthesis of the Globo H Hexasaccharide Using the Programmable Reactivity-Based One-Pot Strategy This research was supported by the National Institutes of Health. F.B. thanks the Deutsche Forschungsgemeinschaft for a fellowship. Angew Chem Int Ed Engl 2001, 40 (7), 1274-1277.
20. Chokhawala, H. A.; Huang, S.; Lau, K.; Yu, H.; Cheng, J.; Thon, V.; Hurtado-Ziola, N.; Guerrero, J. A.; Varki, A.; Chen, X., Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides. ACS Chem Biol 2008, 3 (9), 567-76.
21. Yu, H.; Chokhawala, H. A.; Huang, S.; Chen, X., One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nat Protoc 2006, 1 (5), 2485-92.
22. Liang, C.-H.; Wang, C. C.; Lin, Y. C.; Chen, C. H.; Wong, C.-H.; Wu, C.-Y., Iron oxide/gold core/shell nanoparticles for ultrasensitive detection of carbohydrate-protein interactions. Anal Chem 2009, 81 (18), 7750-6.
23. Liang, P.-H.; Wang, S.-K.; Wong, C.-H., Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: determination of surface and solution dissociation constants. J. Am. Chem. Soc. 2007, 129 (36), 11177-84.
24. Karamanska, R.; Clarke, J.; Blixt, O.; Macrae, J. I.; Zhang, J. Q.; Crocker, P. R.; Laurent, N.; Wright, A.; Flitsch, S. L.; Russell, D. A.; Field, R. A., Surface plasmon resonance imaging for real-time, label-free analysis of protein interactions with carbohydrate microarrays. Glycoconj J 2008, 25 (1), 69-74.
25. Bryan, M. C.; Fazio, F.; Lee, H. K.; Huang, C. Y.; Chang, A.; Best, M. D.; Calarese, D. A.; Blixt, O.; Paulson, J. C.; Burton, D.; Wilson, I. A.; Wong, C.-H., Covalent display of oligosaccharide arrays in microtiter plates. J. Am. Chem. Soc. 2004, 126 (28), 8640-1.
26. Tseng, S. Y.; Wang, C. C.; Lin, C. W.; Chen, C. L.; Yu, W. Y.; Chen, C. H.; Wu, C.-Y.; Wong, C.-H., Glycan arrays on aluminum-coated glass slides. Chem Asian J 2008, 3 (8-9), 1395-405.
27. Li, C.; Simeone, D. M.; Brenner, D. E.; Anderson, M. A.; Shedden, K. A.; Ruffin, M. T.; Lubman, D. M., Pancreatic cancer serum detection using a lectin/glyco-antibody array method. J Proteome Res 2009, 8 (2), 483-92.
28. Wang, D.; Liu, S.; Trummer, B. J.; Deng, C.; Wang, A., Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 2002, 20 (3), 275-81.
29. Willats, W. G.; Rasmussen, S. E.; Kristensen, T.; Mikkelsen, J. D.; Knox, J. P., Sugar-coated microarrays: a novel slide surface for the high-throughput analysis of glycans. Proteomics 2002, 2 (12), 1666-71.
30. Wang, D.; Carroll, G. T.; Turro, N. J.; Koberstein, J. T.; Kovac, P.; Saksena, R.; Adamo, R.; Herzenberg, L. A.; Steinman, L., Photogenerated glycan arrays identify immunogenic sugar moieties of Bacillus anthracis exosporium. Proteomics 2007, 7 (2), 180-4.
31. Shipp, E. L.; Hsieh-Wilson, L. C., Profiling the sulfation specificities of glycosaminoglycan interactions with growth factors and chemotactic proteins using microarrays. Chem. Biol. 2007, 14 (2), 195-208.
32. Park, S.; Shin, I., Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew. Chem. Int. Ed. Engl. 2002, 41 (17), 3180-2.
33. Blixt, O.; Head, S.; Mondala, T.; Scanlan, C.; Huflejt, M. E.; Alvarez, R.; Bryan, M. C.; Fazio, F.; Calarese, D.; Stevens, J.; Razi, N.; Stevens, D. J.; Skehel, J. J.; van Die, I.; Burton, D. R.; Wilson, I. A.; Cummings, R.; Bovin, N.; Wong, C.- H.; Paulson, J. C., Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (49), 17033-8.
34. Bryan, M. C.; Lee, L. V.; Wong, C.-H., High-throughput identification of fucosyltransferase inhibitors using carbohydrate microarrays. Bioorg. Med. Chem. Lett. 2004, 14 (12), 3185-8.
35. Mrksich, M., An early taste of functional glycomics. Chem. Biol. 2004, 11 (6), 739-40.
36. Disney, M. D.; Seeberger, P. H., The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem. Biol. 2004, 11 (12), 1701-7.
37. de Paz, J. L.; Noti, C.; Seeberger, P. H., Microarrays of synthetic heparin oligosaccharides. J. Am. Chem. Soc. 2006, 128 (9), 2766-7.
38. Shilova, N. V.; Galanina, O. E.; Rubina, A. Y.; Butvilovskaya, V. I.; Huflejt, M. E.; Chambers, J.; Roucoux, A.; Bovin, N. V., 2-Aminopyridine--a label for bridging of oligosaccharides HPLC profiling and glycoarray printing. Glycoconjugate J. 2008, 25 (1), 11-4.
39. Adams, E. W.; Ratner, D. M.; Bokesch, H. R.; McMahon, J. B.; O'Keefe, B. R.; Seeberger, P. H., Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology; glycan-dependent gp120/protein interactions. Chem. Biol. 2004, 11 (6), 875-81.
40. Ratner, D. M.; Adams, E. W.; Disney, M. D.; Seeberger, P. H., Tools for glycomics: mapping interactions of carbohydrates in biological systems. Chembiochem 2004, 5 (10), 1375-83.
41. Brun, M. A.; Disney, M. D.; Seeberger, P. H., Miniaturization of microwave-assisted carbohydrate functionalization to create oligosaccharide microarrays. Chembiochem 2006, 7 (3), 421-4.
42. Tully, S. E.; Rawat, M.; Hsieh-Wilson, L. C., Discovery of a TNF-alpha antagonist using chondroitin sulfate microarrays. J Am Chem Soc 2006, 128 (24), 7740-1.
43. Houseman, B. T.; Mrksich, M., Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 2002, 9 (4), 443-54.
44. Feizi, T.; Chai, W., Oligosaccharide microarrays to decipher the glyco code. Nat Rev Mol Cell Biol 2004, 5 (7), 582-8.
45. Angeloni, S.; Ridet, J. L.; Kusy, N.; Gao, H.; Crevoisier, F.; Guinchard, S.; Kochhar, S.; Sigrist, H.; Sprenger, N., Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 2005, 15 (1), 31-41.
46. Lee, M. R.; Shin, I., Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides. Org Lett 2005, 7 (19), 4269-72.
47. Zhou, X.; Zhou, J., Oligosaccharide microarrays fabricated on aminooxyacetyl functionalized glass surface for characterization of carbohydrate-protein interaction. Biosens Bioelectron 2006, 21 (8), 1451-8.
48. Park, S.; Lee, M. R.; Shin, I., Construction of carbohydrate microarrays by using one-step, direct immobilizations of diverse unmodified glycans on solid surfaces. Bioconjugate Chem. 2009, 20 (1), 155-62.
49. Zhi, Z. L.; Powell, A. K.; Turnbull, J. E., Fabrication of carbohydrate microarrays on gold surfaces: direct attachment of nonderivatized oligosaccharides to hydrazide-modified self-assembled monolayers. Anal. Chem. 2006, 78 (14), 4786-93.
50. de Boer, A. R.; Hokke, C. H.; Deelder, A. M.; Wuhrer, M., General microarray technique for immobilization and screening of natural glycans. Anal. Chem. 2007, 79 (21), 8107-13.
51. Carroll, G. T.; Wang, D.; Turro, N. J.; Koberstein, J. T., Photochemical micropatterning of carbohydrates on a surface. Langmuir 2006, 22 (6), 2899-905.
52. Song, X.; Lasanajak, Y.; Xia, B.; Smith, D. F.; Cummings, R. D., Fluorescent glycosylamides produced by microscale derivatization of free glycans for natural glycan microarrays. ACS Chem Biol 2009, 4 (9), 741-50.
53. Wang, C. C.; Huang, Y. L.; Ren, C. T.; Lin, C. W.; Hung, J. T.; Yu, J. C.; Yu, A. L.; Wu, C.-Y.; Wong, C.-H., Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (33), 11661-6.
54. Wang, S. K.; Liang, P. H.; Astronomo, R. D.; Hsu, T. L.; Hsieh, S. L.; Burton, D. R.; Wong, C.-H., Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (10), 3690-5.
55. Wang, C. C.; Chen, J. R.; Tseng, Y. C.; Hsu, C. H.; Hung, Y. F.; Chen, S. W.; Chen, C. M.; Khoo, K. H.; Cheng, T. J.; Cheng, Y. S.; Jan, J. T.; Wu, C.-Y.; Ma, C.; Wong, C.-H., Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (43), 18137-42.
56. Astronomo, R. D.; Kaltgrad, E.; Udit, A. K.; Wang, S. K.; Doores, K. J.; Huang, C. Y.; Pantophlet, R.; Paulson, J. C.; Wong, C.-H.; Finn, M. G.; Burton, D. R., Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. Chem. Biol. 2010, 17 (4), 357-70.
57. Stevens, J.; Blixt, O.; Glaser, L.; Taubenberger, J. K.; Palese, P.; Paulson, J. C.; Wilson, I. A., Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol. 2006, 355 (5), 1143-55.
58. Stevens, J.; Blixt, O.; Paulson, J. C.; Wilson, I. A., Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nat Rev Microbiol 2006, 4 (11), 857-64.
59. Kamena, F.; Tamborrini, M.; Liu, X.; Kwon, Y. U.; Thompson, F.; Pluschke, G.; Seeberger, P. H., Synthetic GPI array to study antitoxic malaria response. Nat Chem Biol 2008, 4 (4), 238-40.
60. Manimala, J. C.; Li, Z.; Jain, A.; VedBrat, S.; Gildersleeve, J. C., Carbohydrate array analysis of anti-Tn antibodies and lectins reveals unexpected specificities: implications for diagnostic and vaccine development. Chembiochem 2005, 6 (12), 2229-41.
61. Bochner, B. S.; Alvarez, R. A.; Mehta, P.; Bovin, N. V.; Blixt, O.; White, J. R.; Schnaar, R. L., Glycan array screening reveals a candidate ligand for Siglec-8. J. Biol. Chem. 2005, 280 (6), 4307-12.
62. O'Reilly, M. K.; Paulson, J. C., Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol. Sci. 2009, 30 (5), 240-8.
63. Calarese, D. A.; Lee, H. K.; Huang, C. Y.; Best, M. D.; Astronomo, R. D.; Stanfield, R. L.; Katinger, H.; Burton, D. R.; Wong, C.-H.; Wilson, I. A., Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (38), 13372-7.
64. Blixt, O.; Hoffmann, J.; Svenson, S.; Norberg, T., Pathogen specific carbohydrate antigen microarrays: a chip for detection of Salmonella O-antigen specific antibodies. Glycoconjugate J. 2008, 25 (1), 27-36.
65. Wang, S. Y.; Su, C. Y.; Lin, M.; Huang, S. Y.; Huang, W. I.; Wang, C. C.; Wu, Y. T.; Cheng, T. J.; Yu, H. M.; Ren, C. T.; Wu, C.-Y.; Wong, C.-H.; Cheng, Y. S., HA-pseudotyped retroviral vectors for influenza antagonist screening. J Biomol Screen 2009, 14 (3), 294-302.
66. Xu, R.; McBride, R.; Paulson, J. C.; Basler, C. F.; Wilson, I. A., Structure, receptor binding, and antigenicity of influenza virus hemagglutinins from the 1957 H2N2 pandemic. J. Virol. 2010, 84 (4), 1715-21.
67. Stevens, J.; Blixt, O.; Tumpey, T. M.; Taubenberger, J. K.; Paulson, J. C.; Wilson, I. A., Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 2006, 312 (5772), 404-10.
68. Wang, D.; Lu, J., Glycan arrays lead to the discovery of autoimmunogenic activity of SARS-CoV. Physiol Genomics 2004, 18 (2), 245-8.
69. Lawrie, C. H.; Marafioti, T.; Hatton, C. S.; Dirnhofer, S.; Roncador, G.; Went, P.; Tzankov, A.; Pileri, S. A.; Pulford, K.; Banham, A. H., Cancer-associated carbohydrate identification in Hodgkin's lymphoma by carbohydrate array profiling. Int. J. Cancer 2006, 118 (12), 3161-6.
70. Buskas, T.; Thompson, P.; Boons, G. J., Immunotherapy for cancer: synthetic carbohydrate-based vaccines. Chem Commun (Camb) 2009, (36), 5335-49.
71. Guo, Z.; Wang, Q., Recent development in carbohydrate-based cancer vaccines. Curr. Opin. Chem. Biol. 2009, 13 (5-6), 608-17.
72. Hecht, M. L.; Stallforth, P.; Silva, D. V.; Adibekian, A.; Seeberger, P. H., Recent advances in carbohydrate-based vaccines. Curr. Opin. Chem. Biol. 2009, 13 (3), 354-9.
73. Jeon, I.; Iyer, K.; Danishefsky, S. J., A practical total synthesis of globo-H for use in anticancer vaccines. J. Org. Chem. 2009, 74 (21), 8452-5.
74. Zhu, J.; Wan, Q.; Lee, D.; Yang, G.; Spassova, M. K.; Ouerfelli, O.; Ragupathi, G.; Damani, P.; Livingston, P. O.; Danishefsky, S. J., From synthesis to biologics: preclinical data on a chemistry derived anticancer vaccine. J. Am. Chem. Soc. 2009, 131 (26), 9298-303.
75. Zhu, J.; Warren, J. D.; Danishefsky, S. J., Synthetic carbohydrate-based anticancer vaccines: the Memorial Sloan-Kettering experience. Expert Rev Vaccines 2009, 8 (10), 1399-413.
76. Astronomo, R. D.; Burton, D. R., Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat Rev Drug Discov 2010, 9 (4), 308-24.
77. Nagorny, P.; Kim, W. H.; Wan, Q.; Lee, D.; Danishefsky, S. J., On the emerging role of chemistry in the fashioning of biologics: synthesis of a bidomainal fucosyl GM1-based vaccine for the treatment of small cell lung cancer. J. Org. Chem. 2009, 74 (15), 5157-62.
78. Jeon, I.; Lee, D.; Krauss, I. J.; Danishefsky, S. J., A new model for the presentation of tumor-associated antigens and the quest for an anticancer vaccine: a solution to the synthesis challenge via ring-closing metathesis. J. Am. Chem. Soc. 2009, 131 (40), 14337-44.
79. Joyce, J. G.; Krauss, I. J.; Song, H. C.; Opalka, D. W.; Grimm, K. M.; Nahas, D. D.; Esser, M. T.; Hrin, R.; Feng, M.; Dudkin, V. Y.; Chastain, M.; Shiver, J. W.; Danishefsky, S. J., An oligosaccharide-based HIV-1 2G12 mimotope vaccine induces carbohydrate-specific antibodies that fail to neutralize HIV-1 virions. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (41), 15684-9.
80. Ragupathi, G.; Koide, F.; Livingston, P. O.; Cho, Y. S.; Endo, A.; Wan, Q.; Spassova, M. K.; Keding, S. J.; Allen, J.; Ouerfelli, O.; Wilson, R. M.; Danishefsky, S. J., Preparation and evaluation of unimolecular pentavalent and hexavalent antigenic constructs targeting prostate and breast cancer: a synthetic route to anticancer vaccine candidates. J. Am. Chem. Soc. 2006, 128 (8), 2715-25.
81. Ragupathi, G.; Koide, F.; Sathyan, N.; Kagan, E.; Spassova, M.; Bornmann, W.; Gregor, P.; Reis, C. A.; Clausen, H.; Danishefsky, S. J.; Livingston, P. O., A preclinical study comparing approaches for augmenting the immunogenicity of a heptavalent KLH-conjugate vaccine against epithelial cancers. Cancer Immunol. Immunother. 2003, 52 (10), 608-16.
82. Kaltgrad, E.; Sen Gupta, S.; Punna, S.; Huang, C. Y.; Chang, A.; Wong, C.-H.; Finn, M. G.; Blixt, O., Anti-carbohydrate antibodies elicited by polyvalent display on a viral scaffold. Chembiochem 2007, 8 (12), 1455-62.
83. Garten, R. J.; Davis, C. T.; Russell, C. A.; Shu, B.; Lindstrom, S.; Balish, A.; Sessions, W. M.; Xu, X.; Skepner, E.; Deyde, V.; Okomo-Adhiambo, M.; Gubareva, L.; Barnes, J.; Smith, C. B.; Emery, S. L.; Hillman, M. J.; Rivailler, P.; Smagala, J.; de Graaf, M.; Burke, D. F.; Fouchier, R. A. M.; Pappas, C.; Alpuche-Aranda, C. M.; Lopez-Gatell, H.; Olivera, H.; Lopez, I.; Myers, C. A.; Faix, D.; Blair, P. J.; Yu, C.; Keene, K. M.; Dotson, P. D., Jr.; Boxrud, D.; Sambol, A. R.; Abid, S. H.; St. George, K.; Bannerman, T.; Moore, A. L.; Stringer, D. J.; Blevins, P.; Demmler-Harrison, G. J.; Ginsberg, M.; Kriner, P.; Waterman, S.; Smole, S.; Guevara, H. F.; Belongia, E. A.; Clark, P. A.; Beatrice, S. T.; Donis, R.; Katz, J.; Finelli, L.; Bridges, C. B.; Shaw, M.; Jernigan, D. B.; Uyeki, T. M.; Smith, D. J.; Klimov, A. I.; Cox, N. J., Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans. Science 2009, 325 (5937), 197-201.
84. Neumann, G.; Noda, T.; Kawaoka, Y., Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 2009, 459 (7249), 931-939.
85. Kuiken, T.; Holmes, E. C.; McCauley, J.; Rimmelzwaan, G. F.; Williams, C. S.; Grenfell, B. T., Host species barriers to influenza virus infections. Science 2006, 312 (5772), 394-397.
86. Maines, T. R.; Jayaraman, A.; Belser, J. A.; Wadford, D. A.; Pappas, C.; Zeng, H.; Gustin, K. M.; Pearce, M. B.; Viswanathan, K.; Shriver, Z. H.; Raman, R.; Cox, N. J.; Sasisekharan, R.; Katz, J. M.; Tumpey, T. M., Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. Science 2009, 325 (5939), 484-487.
87. Skehel, J. J.; Wiley, D. C., Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annu. Rev. Biochem. 2000, 69, 531-569.
88. van Riel, D.; Munster, V. J.; de Wit, E.; Rimmelzwaan, G. F.; Fouchier, R. A. M.; Osterhaus, A.; Kuiken, T., H5N1 virus attachment to lower respiratory tract. Science 2006, 312 (5772), 399-399.
89. Connor, R. J.; Kawaoka, Y.; Webster, R. G.; Paulson, J. C., Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 1994, 205 (1), 17-23.
90. Tumpey, T. M.; Maines, T. R.; Van Hoeven, N.; Glaser, L.; Solorzano, A.; Pappas, C.; Cox, N. J.; Swayne, D. E.; Palese, P.; Katz, J. M.; Garcia-Sastre, A., A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 2007, 315 (5812), 655-659.
91. Keil, W.; Geyer, R.; Dabrowski, J.; Dabrowski, U.; Niemann, H.; Stirm, S.; Klenk, H. D., Carbohydrates of influenza-virus - structural elucidation of the individual glycans of the FPV hemagglutinin by two-dimensional H-1 NMR and methylation analysis. EMBO J. 1985, 4 (10), 2711-2720.
92. Chen, Z. Y.; Aspelund, A.; Jin, H., Stabilizing the glycosylation pattern of influenza B hemagglutinin following adaptation to growth in eggs. Vaccine 2008, 26 (3), 361-371.
93. Ohuchi, R.; Ohuchi, M.; Garten, W.; Klenk, H. D., Oligosaccharides in the stem region maintain the influenza virus hemagglutinin in the metastable form required for fusion activity. J. Virol. 1997, 71 (5), 3719-3725.
94. Skehel, J. J.; Stevens, D. J.; Daniels, R. S.; Douglas, A. R.; Knossow, M.; Wilson, I. A.; Wiley, D. C., A carbohydrate side-chain on hemagglutinins of Hong Kong influenza-viruses inhibits recognition by a monoclonal-antiboby. Proc. Natl. Acad. Sci. U.S.A. 1984, 81 (6), 1779-1783.
95. Deshpande, K. L.; Fried, V. A.; Ando, M.; Webster, R. G., Glycosylation affects cleavage of an H5N2 influenza-virus hemagglutinin and regulates virulence. Proc. Natl. Acad. Sci. U.S.A. 1987, 84 (1), 36-40.
96. Gunther, I.; Glatthaar, B.; Doller, G.; Garten, W., A H1-hemagglutinin of a human influenza A-virus with a carbohydrate-modulated receptor-binding site and an unusual cleavage site. Virus Res. 1993, 27 (2), 147-160.
97. Stevens, J.; Blixt, O.; Tumpey, T. M.; Taubenberger, J. K.; Paulson, J. C.; Wilson, I. A., Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 2006, 312 (5772), 404-410.
98. Chen, M. W.; Cheng, T. J. R.; Huang, Y. X.; Jan, J. T.; Ma, S. H.; Yu, A. L.; Wong, C.-H.; Ho, D. D., A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (36), 13538-13543.
99. Durocher, Y.; Perret, S.; Kamen, A., High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 2002, 30 (2), E9.
100. Durocher, Y.; Perret, S.; Kamen, A., High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucl. Acids Res. 2002, 30 (2), e9-.
101. Wilson, I. A.; Stevens, J.; Blixt, O.; Paulson, J., Influenza HA structure and receptor binding using the glycan microarray. Glycobiology 2006, 16 (11), 1109-1109.
102. Stevens, J.; Blixt, O.; Paulson, J. C.; Wilson, I. A., Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nat Rev Microbiol 2006, 4 (11), 857-864.
103. Stevens, J.; Blixt, O.; Glaser, L.; Taubenberger, J. K.; Palese, P.; Paulson, J. C.; Wilson, I. A., Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 2006, 355 (5), 1143-1155.
104. Srinivasan, A.; Viswanathan, K.; Raman, R.; Chandrasekaran, A.; Raguram, S.; Tumpey, T. M.; Sasisekharan, V.; Sasisekharan, R., Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses. Proc Natl Acad Sci U S A 2008, 105 (8), 2800-5.
105. Chandrasekaran, A.; Srinivasan, A.; Raman, R.; Viswanathan, K.; Raguram, S.; Tumpey, T. M.; Sasisekharan, V.; Sasisekharan, R., Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat Biotechnol 2008, 26 (1), 107-13.
106. Ohuchi, M.; Ohuchi, R.; Feldmann, A.; Klenk, H. D., Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. J Virol 1997, 71 (11), 8377-84.
107. Deom, C. M.; Caton, A. J.; Schulze, I. T., Host cell-mediated selection of a mutant influenza A virus that has lost a complex oligosaccharide from the tip of the hemagglutinin. Proc Natl Acad Sci U S A 1986, 83 (11), 3771-5.
108. Chandrasekaran, A.; Srinivasan, A.; Raman, R.; Viswanathan, K.; Raguram, S.; Tumpey, T. M.; Sasisekharan, V.; Sasisekharan, R., Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat. Biotechnol. 2008, 26 (1), 107-113.
109. Stevens, J.; Blixt, O.; Chen, L. M.; Donis, R. O.; Paulson, J. C.; Wilson, I. A., Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. J. Mol. Biol. 2008, 381 (5), 1382-1394.
110. Liang, P. H.; Wang, S. K.; Wong, C.-H., Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: determination of surface and solution dissociation constants. J Am Chem Soc 2007, 129 (36), 11177-84.
111. Sauter, N. K.; Bednarski, M. D.; Wurzburg, B. A.; Hanson, J. E.; Whitesides, G. M.; Skehel, J. J.; Wiley, D. C., Hemagglutinins from 2 influenza-virus variants bind to sialic-acid derivatives with millimolar dissociation-constants - A 500-MHz proton nuclear magnetic-resonance study. Biochemistry 1989, 28 (21), 8388-8396.
112. Hanson, S. R.; Culyba, E. K.; Hsu, T. L.; Wong, C.-H.; Kelly, J. W.; Powers, E. T., The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (9), 3131-3136.
113. Wagner, R.; Heuer, D.; Wolff, T.; Herwig, A.; Klenk, H. D., N-glycans attached to the stem domain of haemagglutinin efficiently regulate influenza A virus replication. J. Gen. Virol. 2002, 83, 601-609.
114. Vigerust, D. J.; Ulett, K. B.; Boyd, K. L.; Madsen, J.; Hawgood, S.; McCullers, J. A., N-linked glycosylation attenuates H3N2 influenza viruses. J. Virol. 2007, 81 (16), 8593-8600.
115. Hoffmann, E.; Lipatov, A. S.; Webby, R. J.; Govorkova, E. A.; Webster, R. G., Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (36), 12915-12920.
116. Huleatt, J. W.; Nakaar, V.; Desai, P.; Huang, Y.; Hewitt, D.; Jacobs, A.; Tang, J.; McDonald, W.; Song, L.; Evans, R. K.; Umlauf, S.; Tussey, L.; Powell, T. J., Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 2008, 26 (2), 201-214.
117. Scanlan, C. N.; Ritchie, G. E.; Baruah, K.; Crispin, M.; Harvey, D. J.; Singer, B. B.; Lucka, L.; Wormald, M. R., Inhibition of mammalian glycan biosynthesis produces non-self antigens for a broadly neutralising, HIV-1 specific antibody. J. Mol. Biol. 2007, 372 (1), 16-22.
118. Yang, Z.-Y.; Wei, C.-J.; Kong, W.-P.; Wu, L.; Xu, L.; Smith, D. F.; Nabel, G. J., Immunization by Avian H5 Influenza Hemagglutinin Mutants with Altered Receptor Binding Specificity. Science 2007, 317 (5839), 825-828.
119. Ekiert, D. C.; Bhabha, G.; Elsliger, M. A.; Friesen, R. H. E.; Jongeneelen, M.; Throsby, M.; Goudsmit, J.; Wilson, I. A., Antibody recognition of a highly conserved influenza virus epitope. Science 2009, 324 (5924), 246-251.
120. Kashyap, A. K.; Steel, J.; Oner, A. F.; Dillon, M. A.; Swale, R. E.; Wall, K. M.; Perry, K. J.; Faynboym, A.; Illhan, M.; Horowitz, M.; Horowitz, L.; Palese, P.; Bhatt, R. R.; Lerner, R. A., Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (16), 5986-5991.
121. Scheid, J. F.; Mouquet, H.; Feldhahn, N.; Seaman, M. S.; Velinzon, K.; Pietzsch, J.; Ott, R. G.; Anthony, R. M.; Zebroski, H.; Hurley, A.; Phogat, A.; Chakrabarti, B.; Li, Y. X.; Connors, M.; Pereyra, F.; Walker, B. D.; Wardemann, H.; Ho, D.; Wyatt, R. T.; Mascola, J. R.; Ravetch, J. V.; Nussenzweig, M. C., Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 2009, 458 (7238), 636-640.
122. Sui, J. H.; Hwang, W. C.; Perez, S.; Wei, G.; Aird, D.; Chen, L. M.; Santelli, E.; Stec, B.; Cadwell, G.; Ali, M.; Wan, H. Q.; Murakami, A.; Yammanuru, A.; Han, T.; Cox, N. J.; Bankston, L. A.; Donis, R. O.; Liddington, R. C.; Marasco, W. A., Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 2009, 16 (3), 265-273.
123. Throsby, M.; van den Brink, E.; Jongeneelen, M.; Poon, L. L. M.; Alard, P.; Cornelissen, L.; Bakker, A.; Cox, F.; van Deventer, E.; Guan, Y.; Cinatl, J.; Meulen, J. t.; Lasters, I.; Carsetti, R.; Peiris, M.; de Kruif, J.; Goudsmit, J., Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM memory B cells. PLoS ONE 2008, 3 (12), e3942.
124. Meezan, E.; Wu, H. C.; Black, P. H.; Robbins, P. W., Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by sephadex chromatography. Biochemistry (Mosc). 1969, 8 (6), 2518-24.
125. Turner, G. A., N-glycosylation of serum proteins in disease and its investigation using lectins. Clin. Chim. Acta 1992, 208 (3), 149-71.
126. Saussez, S.; Marchant, H.; Nagy, N.; Decaestecker, C.; Hassid, S.; Jortay, A.; Schuring, M. P.; Gabius, H. J.; Danguy, A.; Salmon, I.; Kiss, R., Quantitative glycohistochemistry defines new prognostic markers for cancers of the oral cavity. Cancer 1998, 82 (2), 252-60.
127. Dube, D. H.; Bertozzi, C. R., Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov 2005, 4 (6), 477-88.
128. Kim, Y. J.; Varki, A., Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconjugate J. 1997, 14 (5), 569-76.
129. Sell, S., Cancer-associated carbohydrates identified by monoclonal antibodies. Hum. Pathol. 1990, 21 (10), 1003-19.
130. Taylor-Papadimitriou, J.; Epenetos, A. A., Exploiting altered glycosylation patterns in cancer: progress and challenges in diagnosis and therapy. Trends Biotechnol. 1994, 12 (6), 227-33.
131. Hakomori, S.; Zhang, Y., Glycosphingolipid antigens and cancer therapy. Chem. Biol. 1997, 4 (2), 97-104.
132. Orntoft, T. F.; Vestergaard, E. M., Clinical aspects of altered glycosylation of glycoproteins in cancer. Electrophoresis 1999, 20 (2), 362-71.
133. Hollingsworth, M. A.; Swanson, B. J., Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 2004, 4 (1), 45-60.
134. Hakomori, S., Traveling for the glycosphingolipid path. Glycoconjugate J. 2000, 17 (7-9), 627-47.
135. Zhang, S.; Cordon-Cardo, C.; Zhang, H. S.; Reuter, V. E.; Adluri, S.; Hamilton, W. B.; Lloyd, K. O.; Livingston, P. O., Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int. J. Cancer 1997, 73 (1), 42-9.
136. Zhang, S.; Zhang, H. S.; Cordon-Cardo, C.; Reuter, V. E.; Singhal, A. K.; Lloyd, K. O.; Livingston, P. O., Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. Int. J. Cancer 1997, 73 (1), 50-6.
137. Kannagi, R.; Levery, S. B.; Ishigami, F.; Hakomori, S.; Shevinsky, L. H.; Knowles, B. B.; Solter, D., New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. J. Biol. Chem. 1983, 258 (14), 8934-42.
138. Canevari, S.; Fossati, G.; Balsari, A.; Sonnino, S.; Colnaghi, M. I., Immunochemical analysis of the determinant recognized by a monoclonal antibody (MBr1) which specifically binds to human mammary epithelial cells. Cancer Res. 1983, 43 (3), 1301-5.
139. Bremer, E. G.; Levery, S. B.; Sonnino, S.; Ghidoni, R.; Canevari, S.; Kannagi, R.; Hakomori, S., Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBr1 expressed in normal and neoplastic epithelial cells of human mammary gland. J. Biol. Chem. 1984, 259 (23), 14773-7.
140. Martignone, S.; Bedini, A. V.; Ciavolella,
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46567-
dc.description.abstractAbstract
Carbohydrates play an important role in health and disease. Infectious diseases, inflammation, and cancer are disorders that have been linked to glycosylation phenotypes. To understand, diagnose, and predict the progression of such carbohydrate-mediated diseases, glycan array is a promising new tool for investigating the complicated interactions of carbohydrates with carbohydrate-binding proteins. The glycan array platform covalently immobilizes carbohydrate structures to a solid surface, mimicking the multivalent display of glycan structures at the cell surface, and allowing sensitive and high-throughput characterization of carbohydrate-binding proteins. In studying influenza virus infection, the glycan array was used to quantitatively analyze the influenza virus surface glycoprotein, heamagglutinin (HA). To elucidate the role of HA glycosylation in this important interaction, various defined HA glycoforms were prepared and their binding affinity and specificity were studied using a synthetic sialosides (SA) microarray. Truncation of the N-glycan structures on HA increased SA binding affinities, while decreasing specificity toward disparate SA ligands. HA protein bearing only a single N-linked GlcNAc at each glycosylation site showed better binding affinity toward sialosides. Antibodies elicited by monoglycosylated HA showed higher neutralization activity against various influenza viruses subtypes than the fully glycosylated HAs. Thus, removal of structurally nonessential glycans on viral surface glycoproteins may be an effective and general approach for vaccine design against influenza and other human viruses.
With respect to biomarkers, the glycan array was used to probe the circulating antibodies in breast cancer versus healthy individuals to the cancer-related carbohydrate antigen, Globo H. Aberrant glycan structures arose in cancer and can be a potential biomarker for the early detection and treatment of cancer. This work established that the glycan array can be used to monitor differences in the carbohydrate-binding capacity of serum antibodies from individuals who are healthy versus those with breast cancer. This was demonstrated by binding of sera antibodies to the carbohydrate antigen, Globo H, which is highly expressed on breast cancer cells. Antibodies against Globo H from breast cancer patients were significantly higher than normal donors and increaseed as the disease progressed. This represents a powerful tool that can be developed for blood-based high throughput cancer diagnostics. When comparing the sensitivity between glycan array and the tranditional ELISA method, it was found that the array method required only much less material (atto-mole amounts) and is 6 to 8 orders of magnitude more sensitive.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:16:02Z (GMT). No. of bitstreams: 1
ntu-99-F93b46002-1.pdf: 4015182 bytes, checksum: 8330e04fcca9c24571a6ef1f43667034 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝…………………………………………………………………………………… ii
中文摘要…………………………………………………………………………........ iv
英文摘要……………………………………………………………………………… v
目錄…………………………………………………………………………………… vii
圖目錄………………………………………………………………………………… iv
表目錄………………………………………………………………………………… vi

Chapter 1……………………………………………………………………………… 1
1.1 Glycans: the important macromolecule in the living organisms………………. 1
1.2 Glycans are structurally complex……………………………………………… 2
1.3 Glycan Binding Proteins (GBPs)………………………………………………. 4
1.4 Glycan array as a new tool to study glycan function…………………………... 7
1.5 The development of glycan array……………………………………………… 8
1.6 The applications of glycan array in disease detection…………………………. 12
1.7 The applications of glycan array in vaccine development…………………….. 17
Chapter 2……………………………………………………………………………… 21
2.1 Introduction to Influenza viruses……………………………………………... 21
2.2 Hemagglutinin (HA) and it glycosylation……………………………………. 23
2.3 Outline of HA glycosylated variants………………………………………….. 26
2.4 Expression, purification and enzymatic remodeling of glycosylated HAs…… 27
2.5 Structural and spectroscopic comparisons by Circular Dichroism…………… 32
2.6 Mass spectroscopy for analysis of HA glycoforms…………………………... 33
2.7 Sialosides (SA) Array designed for studying HA binding preferences………. 38
2.8 Defined HA glycoforms for glycan array profiling…………………………... 39
2.9 Quantitative glycan array analysis to derive dissociation constants………….. 41
2.10 Dissecting binding energy contribution from receptor sialosides……………. 46
2.11 A new strategy for vaccine design based on remodeling of HA glycoforms…. 54
2.12 Conclusion…………………………………………………………………….. 58
2.13 Discussion……………………………………………………………………... 59
Chapter 3……………………………………………………………………………… 64
3.1 Tumor associated glycans (TAGs)………………………………………... 64
3.2 Globo H as a tumor associated glycan (TAG) for breast cancer biomarker…... 66
3.3 Rationale: Globo H microarray can be a diagnostic tool?................ 68
3.4 Globo H Analogs array…………………..…………… 70
3.5 Specificities of anti-Globo H monoclonal antibody to Globo H fragments..... 72
3.6 Mass spectroscopy for analysis of HA glycoforms…………………………... 75
3.7 Glycan array of Globo H analogs for breast cancer biomarker discovery. 78
3.8 Hierarchical clustering to analyze signals on glycan array…... 83
3.9 Monitoring the immune response to Globo H vaccine using Globo H array 95
3.10 Conclusion…………………………………………………………………….. 98
3.11 Discussion and future work…………………………………….………….. 99
Appendix I Experimental……………………………………………………………... 100
Appendix II References………………………………………………………………. 114
dc.language.isoen
dc.subject流感zh_TW
dc.subject晶片zh_TW
dc.subject醣zh_TW
dc.subject癌症zh_TW
dc.subjectGlycanen
dc.subjectarrayen
dc.subjecthemagglutininen
dc.subjectglycan microarrayen
dc.subjectglobo Hen
dc.title醣晶片於疾病之應用與發展zh_TW
dc.titleGlycan Array: Development and Applications in Human Diseasesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.coadvisor吳宗益(Chung-Yi Wu)
dc.contributor.oralexamcommittee林國儀(Kao-I Lin),梁碧惠,鄭庭仁,馬徹,邱繼輝
dc.subject.keyword晶片,醣,癌症,流感,zh_TW
dc.subject.keywordGlycan,globo H,glycan microarray,hemagglutinin,array,en
dc.relation.page144
dc.rights.note有償授權
dc.date.accepted2010-07-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
3.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved