請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46555
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳靜枝 | |
dc.contributor.author | Hsin-Mei Wang | en |
dc.contributor.author | 王馨梅 | zh_TW |
dc.date.accessioned | 2021-06-15T05:15:22Z | - |
dc.date.available | 2010-07-23 | |
dc.date.copyright | 2010-07-23 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-21 | |
dc.identifier.citation | [1] 陳昌佑,「供應鏈管理之主規劃排程演算法 ─ 考慮批量對決策之影響」,台灣大學資訊管理學系研究所碩士論文,民國97年。
[2] 傅光宇,供應鏈之主規劃排程演算法 ─ 考慮整備成本與時間決策之影響」,台灣大學資訊管理學系研究所碩士論文,民國94年。 [3] 黃慨郁,「供應鍊網路中考量回收機制之主規劃排程演算法」,台灣大學資訊管理學系研究所碩士論文,民國95年。 [4] 楊依潔,「供應鏈網路中考量替代料之主規劃排程演算法」,台灣大學資訊管理學系研究所碩士論文,民國94年。 [5] 謝志欣,「供應鏈管理之主規劃排程演算法 ─ 以最短路徑演算法滿足所有訂單需求」,台灣大學資訊管理學系研究所碩士論文,民國90年。 [6] Adenso-Díaz, B., S. García-Carbajal and S. Lozano, “An Efficient GRASP Algorithm for Disassembly Sequence Planning,” OR Spectrum, Vol. 29, No. 3, ppt. 535-549, 2007. [7] Beamon, B. M., “Designing the Green Supply Chain,” Logistics Information Management, Vol. 12, No. 4, pp. 332-342, 1999. [8] Daniel, V. and R. Guide, “Scheduling with Priority Dispatching Rules and Drum-buffer-Rope in a Recoverable Manufacturing System,” International Journal of Production Economics, Vol. 53, pp. 101-116, 1997. [9] Dekker, R., M. Fleischmann, K. Inderfurth and L. N. Van Wassenhove, “Reverse Logistic, Quantitative Models for Closed-Loop Supply Chains, ” Springer-Verlag Berlin Heidelberg, 2004. [10] Dowlatshahi, S., “Developing a Theory of Reverse Logistics,” Interfaces, Vol. 30, pp. 143-155, 2000. [11] Ferrão, P. and José A., “Design for Recycling in the Automobile Industry: New Approaches and New Tools,” Journal of Engineering Design, Vol. 17, No. 5, pp. 447-462, 2006. [12] Fleischmann, M., “Quantitative Models for Reverse Logistics,” The Thesis To Obtain The Degree of Doctor From the Erasmus University Rotterdam, 2000. [13] Fleischmann, M., “Reverse Logistics Network Structures and Design,” Erasmus Research Institute of Management Report Series Research in Management, pp. 1-21, 2001. [14] Fleischmann, M., H. R. Krikke, R. Dekker and S. D. P. Flapper, “A Characterisation of Logistics Networks for Product Recovery,” Omega, Vol. 28, pp. 653-666, 2000. [15] Fleischmann, M., J. M. Bloemhof-Ruwaard, R. Dekker, E. van der Laan, J. A.E.E. van Nunen and L. N. Van Wassenhove, “Quantitative Models for Reverse Logistics: A Review,” European Journal of Operational Research, Vol. 103, pp. 1-17, 1997. [16] Golany, B., J. Yang and G. Yu, “Economic Lot-Sizing with Remanufacturing Options,” IIE Transaction, Vol. 33, pp. 995-1003, 2001. [17] Guide, V. D. R. and M. S. Spencer, “Rough-Cut Capacity Planning for Remanufacturing Firms,” Production Planning and Control, Vol. 8, No. 3, pp. 237-244, 1997. [18] Guide, V. D. R., V. Jayaraman, R. Srivastava and W. C. Benton, “Supply-Chain Management for Recoverable Manufacturing Systems,” Interfaces, Vol. 30, No. 3, pp. 125-142, 2000. [19] Hillegersberg, J. van, R. Zuidwijk, J. van Nunen and D. van Eijk, “Supporting Return Flows in the Supply Chain,” Communications of the ACM, Vol.44, No.6, pp.74-79, 2001. [20] Jayaraman V., V. D. R. Guide and R. Srivastava, “A Closed-Loop Logistics Model for Remanufacturing,” Journal of the Operational research Society, Vol. 50, pp. 497-508, 1999. [21] Jayaraman, V., R. A. Patterson and E. Rolland, “The Design of Reverse Distribution Networks: Models and Solution Procedures,” European Journal of Operational Research, Vol. 150, pp. 128-149, 2003. [22] Knight, W. A. and M. Sodhi, “Design for Bulk Recycling: Analysis of Materials Separation,” Annals of the CIRP, Vol. 49, pp. 83-86, 2000. [23] Lambert, A. J. D., “Linear Programming in Disassembly/Clustering Sequence Generation,” Computers and Industrial Engineering, Vol. 36, pp. 723-738, 1999. [24] Lee, D-H, J-G Kang and P. Xirouchakis, “Disassembly Planning and Scheduling: Review and Further Research,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 215, No. 5, pp. 695-709, 2001. [25] Li, Y., J. Chen and X. Cai, “Uncapacitated Production Planning with Multiple Product Types, Returned Product Remanufacturing and Demand Substitution,” OR Spectrum, Vol. 28, pp. 101-125, 2006. [26] Lin, Z. H., “A Heuristic Master Planning Algorithm for Supply Chain Network with Component Commonality”, The Thesis To Obtain The Master Degree From Department of Information Management, National Taiwan University, 2004. [27] Parkinson, H. J. and G. Thompson, “Systematic Approach to the Planning and Execution of Product Remanufacture,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 218, No. 1, pp. 1-13, 2004. [28] Realff, M. J., J. C. Ammons and D. J. Newton, “Robust Reverse Production System for Carpet Recycling,” IIE Transaction, Vo. 36, pp. 767-776, 2004. [29] Reveliotis, S. A., “Uncertainty Management in Optimal Disassembly Planning Through Learning-Based Strategies,” IIE Transaction, Vol. 39, pp. 645-658, 2007. [30] Spengler, T., H. Püchert, T. Penkuhn and O. Rentz, “Environmental Integrated Production and Recycling Management,” European Journal of Operational Research, Vol. 97, pp. 308-326, 1997. [31] Spengler, T., M. Ploog and M. Schröter, “Integrated Planning of Acquisition, Disassembly and Bulk Recycling: a Case Study on Electronic Scrap Recovery,” OR Spectrum, Vol. 25, pp. 413-442, 2003. [32] Taleb, K. N. and S. M. Gupta, “Disassembly of Multiple Product Structures,” Computers and Industrial Engineering, Vol. 32, No. 4, pp. 949-961, 1997. [33] Taleb, K. N., S. M. Gupta and L. Brennan, “Disassembly of Complex Product Structures with Parts and Materials Commonality,” Production Planning and Control, Vol. 8, No. 3, pp. 255-269, 1997. [34] Thierry, M., M. Salomon, J. Van Nunen and L. Van Wassenhove, “Strategic Issues in Product Recovery Management,” California Management Review, Vol. 37, No. 2, pp. 114-135, 1995. [35] van der Laan, E. and M. Salomon, “Production Planning and Inventory Control with Remanufacturing and Disposal,” European Journal of Operational Research, Vol. 102, pp. 264-278, 1997. [36] van der Laan, E., R. Dekker, M. Salomon and A. Ridder, “An (s,Q) Inventory Model with Remanufacturing and Disposal,” International Journal of Production Economics, Vol. 46-47, pp. 339-350, 1996. [37] Wongthatsanekorn, W., “A Goal Programming Approach for Plastic Recycling System in Thailand,” Proceedings of World Academy of Science, Engineering and Technology, Vol. 37, pp. 513-518, 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46555 | - |
dc.description.abstract | 回收是近來極受重視的全球性議題。回收廢棄物有諸多益處,如可提供價格低廉的再生物料以及降低垃圾量,但由於回收過程中,商品會被逐步分解成許多需求物料、需求之間無法被獨立規劃的特性,針對回收流程進行主規劃排程較一般生產規劃更顯困難。為了解決回收流程的主規劃排程問題,以往研究提出了一些網路模型,但這些模型多半過於簡化,且附帶諸多假設限制,如僅規劃單期、單一角色或單一商品的回收活動。
有鑑於此,本研究提出了結構更為完整的回收供應鏈(Recovery Supply Chain)模型,其中成員包括了廢棄物收集商(Collector)、拆解商(Disassembler)、壓碎商(Shredder)、原物料精製商(Reconditioner)及廢棄物料處理商(Garbage Handler)。以此模型為基礎,本研究致力於解決需求導向回收供應鏈的主規劃排程問題。在考量多個廢棄商品、規劃多期、且有多張需求的狀況下,以間斷時間模式進行回收供應鏈中期的生產、運輸、存貨、整備及物料棄置活動規劃。 本研究首先提出一多目標混合整數線性規劃模型,最小化總需求延遲成本以滿足需求為首要考量;當延遲成本獲得最佳解之後,再以最小化總處理、運輸、存貨、整備及廢棄商品成本為目標。此規劃問題若以混合整數線性規劃模型求解,在問題規模龐大時,需要花費大量時間求解,也可能無法求得可行解。因此本研究提出ㄧ啟發式演算法,使得問題能在有效率的時間下,得到一趨近最佳解之解決方案。 本研究啟發式演算法的流程為:先進行規劃排程之前置作業,接著將需求排序,完成後依照排序結果對每張需求進行規劃排程,找出對應的最佳生產路徑及生產時程。最後,本研究將實際建立一規劃排程系統,並進行情境分析及實例討論,以驗證本啟發式演算法為一可行且高效率之規劃求解選擇。 | zh_TW |
dc.description.abstract | Recently, recovery management becomes an important issue around the world. In spite of all economical and environmental advantages of recovery, it is difficult to solve corresponding master planning (MP) problems as products are sequentially decomposed into multiple demand sources. Some network models are proposed before to solve such problems, but they are simple and with unrealistic assumptions.
In this study, a complete recovery supply chain model, which includes players like collectors, disassebmlers, shredders, reconditioners and garbage handlers, is proposed. Then, considering multiple product structures, multiple discrete planning periods and multiple demands, MP problems for recovery supply chains are solved to determine optimal transportation, processing, stocking, and garbage handling quantities of players. To solve MP problems for recovery supply chains, a multiple-goal Mixed Integer Programming (MIP) model is proposed with two objectives. The first objective is to minimize the total delay cost. The second objective is to minimize the sum of processing cost, transportation cost, holding cost, setup cost and garbage handling cost given that the first one is minimized. Though the MIP model can obtain optimal solutions when problems are simple, the solving times grow exponentially with the increase of problem sizes. It may even fail to return feasible solutions when problems become extremely complex. To improve the effectiveness and efficiency of finding solutions, a heuristic algorithm, Recovery Process Master Planning Algorithm (RPMPA), is proposed. The main process of RPMPA consists of three phases: preliminary works, demand grouping and sorting algorithm (DGSA), and the Recovery Process Path Selection Algorithm (RPPSA). For preliminary works, all multi-function nodes are split into single-function nodes and sub-networks of requested components are extracted. In DGSA, the sequence of demands is determined. Finally, in RPPSA, best disassembly paths and disassembly time schedules are decided for individual demands based on the sequence outputted by DGSA. To show the effectiveness and efficiency of RPMPA, a prototype is constructed and a scenario analysis is conducted. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:15:22Z (GMT). No. of bitstreams: 1 ntu-99-R97725012-1.pdf: 906480 bytes, checksum: 6f603e80f09cba6a574ea8950eb5e040 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | List of Figures vii
List of Tables ix Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Objectives 3 1.3 Research Scope 5 Chapter 2 Literature Review 6 2.1 Introduction of Product Recovery 6 2.2 Characteristics of Product Recovery 8 2.2.1 Uncertainty management 8 2.2.2 Reverse Logistic 9 2.2.3 Decomposition 10 2.3 Product Recovery Network 12 2.3.1 Recovery Supply Chain and Traditional Supply Chain 13 2.3.2 Recovery Supply Chain, Bulk Recycling Network, and Assembly Product Remanufacturing Network 14 Chapter 3 Problem Description and Formulation 17 3.1 Problem Description 18 3.1.1 Product Structure 18 3.1.2 Recovery Supply Chain Network 20 3.1.2.1 The Architecture 20 3.1.2.2 The Process 22 3.1.3 Costs 23 3.1.4 Demands 24 3.1.5 Planning Time Buckets 24 3.2 Assumptions 25 3.3 Mixed Integer Programming Model 26 3.3.1 Notation 26 3.3.2 Constraints 29 3.3.3 Objective Functions 31 3.3.4 Complexity Analysis 32 3.4 Limitations 34 Chapter 4 Heuristic Recovery Process Master Planning Algorithm 36 4.1 The Main Process of RPMPA 37 4.2 Preliminary Works 37 4.2.1 Single-Function Node Confirmation 38 4.2.2 Sub-network Extraction 38 4.3 Demand Grouping and Sorting Algorithm (DGSA) 40 4.3.1 Demand Grouping 41 4.3.2 Sorting Between Groups 49 4.4 The Recovery Process Path Selection Algorithm (RPPSA) 51 4.4.1 Notations 52 4.4.2 The Process 56 4.5 Conclusion 67 4.6 Complexity Analysis 67 Chapter 5 System Illustration and Model Analysis 69 5.1 System Illustration 69 5.1.1 Data Structure 70 5.1.2 RPMPA System Prototype 75 5.2 Scenario Design 76 5.2.1 Factor Description 77 5.2.2 Dimensions of Scenario Design 78 5.2.3 Basic Information of Scenarios 80 5.3 Planning Example 84 5.4 Computational Analysis 97 5.4.1 Planning Results of Scenarios 97 5.4.2 Factor Analysis 99 5.4.3 Conclusion 107 5.5 Efficiency Analysis 108 5.6 Testing on a Real-World Case 109 5.7 Analysis of Differences from Optimal Solutions 111 Chapter 6 Conclusion and Future Work 113 6.1 Conclusion 113 6.2 Future Work 114 Bibliography 115 | |
dc.language.iso | en | |
dc.title | 回收供應鏈管理之主規劃排程演算法 | zh_TW |
dc.title | A Heuristic Master Planning Algorithm for Recovery Supply Chain Management | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔣明晃,許鉅秉,黃奎隆 | |
dc.subject.keyword | 主規劃排程,多目標混合整數線性規劃模型,啟發式演算法,回收之產品結構,回收供應鏈, | zh_TW |
dc.subject.keyword | Master Planning (MP),Mixed Integer Programming (MIP),Heuristic Algorithm,BOM for Recovery,Recovery Supply Chain, | en |
dc.relation.page | 119 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-22 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 885.23 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。